精英家教网 > 高中数学 > 题目详情
设集合A={x|x2-3x+4≥0},集合B={x|log2x>1},则A∩∁RB=(  )
A、(-∞,2)
B、(-∞,2]
C、(0,2)
D、(0,2]
考点:交、并、补集的混合运算
专题:集合
分析:分别求出A与B中不等式的解集确定出A与B,求出B的补集,找出A与B补集的交集即可.
解答: 解:由A中的不等式x2-3x+4≥0,得到△=9-16=-7<0,
∴此不等式解集为R,即A=R,
由B中的不等式变形得:log2x>1=log22,
解得:x>2,
∴B=(2,+∞),
∵全集为R,∴∁RB=(-∞,2],
则A∩(∁RB)=(-∞,2].
故选:B.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点是(0,-
3
)和(0,
3
),并且经过点(
3
2
 ,  1)
,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F.
(Ⅰ)求椭圆C和抛物线E的标准方程;
(Ⅱ)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求
AG
HB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某设备的使用年限x(年)和所支出的维修费用y(万元),有如下表所示的统计资料:
使用年限x(年) 2 3 4 5 6
维修费用y(万元) 2.2 3.8 5.5 6.5 7.0
由资料知
y
对x呈线性相关关系,则其回归直线方程
y
=bx+a为
 
 (其中2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤|f(
π
6
)|
对一切x∈R恒成立,则    
①f(-
π
12
)=0;      
②|f(
12
)|<|f(
π
5
)|

③f(x)既不是奇函数也不是偶函数;  
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z);   
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.
以上结论正确的是(  )
A、①②B、①②③
C、④⑤D、③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为R的圆C中,已知弦AB的长为5,则
AB
AC
=(  )
A、
5
2
B、
25
2
C、
5
2
R
D、
25
2
R

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是真命题的个数是(  )
①?α,β∈R,sin(α+β)≠sinα+sinβ
②命题p:?x∈R,x2+x+1=0,则命题?p:?x∈R,x2+x+1≠0;
③?ϕ∈R,函数f(x)=sin(2x+φ)都不是偶函数
④?a>0,a≠1,函数f(x)=logax与y=ax的图象有三个交点.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台
B、有两个面平行,其余各个面都是梯形的几何体一定都是棱台
C、圆锥的轴截面是等腰三角形
D、用一个平面去截球,截面是圆

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性:
(1)f(x)=
1-x2
|x+2|-2

(2)f(x)=(
1
2x-1
+
1
2
)•x

(3)f(x)=lg(
x2+1
-x

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C的顶点在坐标原点,对称轴为y轴,若过点M(0,1)任作一直线交抛物线C于A(x1,y1),B(x2,y2)两点,且x1•x2=-4,则抛物线C的方程为
 

查看答案和解析>>

同步练习册答案