精英家教网 > 高中数学 > 题目详情

【题目】某早餐店对一款新口味的酸奶进行了一段时间试销,定价为/.酸奶在试销售期间足量供应,每天的销售数据按照分组,得到如下频率分布直方图,以不同销量的频率估计概率.

从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;

试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).

①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求的分布列和数学期望;

②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?

注:销售额=销量×定价;利润=销售额-批发成本.

【答案】①详见解析;②应该批发一大箱.

【解析】

酸奶每天销量大于瓶的概率为,不大于瓶的概率为,设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.利用对立事件概率公式求解即可.

①若早餐店批发一大箱,批发成本为元,依题意,销量有四种情况,分别求出相应概率,列出分布列,求出的数学期望,若早餐店批发一小箱,批发成本为元,依题意,销量有两种情况,分别求出相应概率,由此求出的分布列和数学期望;②根据①中的计算结果,,从而早餐应该批发一大箱.

解:根据图中数据,酸奶每天销量大于瓶的概率为,不大于瓶的概率为.

设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.

所以.

①若早餐店批发一大箱,批发成本为元,依题意,销量有四种情况.

当销量为瓶时,利润为元;

当销量为瓶时,利润为元;

当销量为瓶时,利润为元;

当销量为瓶时,利润为.

随机变量的分布列为

所以(元)

若早餐店批发一小箱,批发成本为元,依题意,销量有两种情况.

当销量为瓶时,利润为元;

当销量为瓶时,利润为.

随机变量的分布列为

所以(元).

②根据①中的计算结果,

所以早餐店应该批发一大箱.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若有两个不同的极值点,求实数的取值范围;

2)在(1)的条件下,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】虚拟现实()技术被认为是经济发展的新增长点,某地区引进技术后,市场收入(包含软件收入和硬件收入)逐年翻一番,据统计该地区市场收入情况如图所示,则下列说法错误的是( )

A.该地区2019年的市场总收入是2017年的4

B.该地区2019年的硬件收入比2017年和2018年的硬件收入总和还要多

C.该地区2019年的软件收入是2018年的软件收入的3

D.该地区2019年的软件收入是2017年的软件收入的6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线的切线方程为,求实数的值;

2)若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面的中点.

1)求证:平面

2)求直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案