精英家教网 > 高中数学 > 题目详情
A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1(θ为参数)上一点,求它到直线C2(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:++L+

【答案】分析:A.先连OC.由∠ABC=60°,∠BAC=40°,得出∠ACB=80°从而的度数均为80°.故有∠EOC=80°+80°=160°最后得出:∠OEC的大小即可;
B.设P(x,y)为曲线C2上任意一点,P′(x′,y′)为曲线x2+4xy+2y2=1上与P对应的点,根据矩阵变换得出结合P′是曲线C1上的点,求得C2的方程即可;
C.将曲线C1化成普通方程(x-1)2+y2=1,圆心是(1,0),直线C2化成普通方程最后求出曲线C1上点到直线的距离即可;
D.由柯西不等式,得:(++…+2≤(1+1+…+1)(Cn1+Cn2+…Cn2+)=n(2n-1)即可得到证明.
解答:A.选修4-1:几何证明选讲
解:连OC.∵∠ABC=60°,∠BAC=40°,∴∠ACB=80°.(4分)
∵OE⊥AB,∴E为的中点,∴的度数均为80°.
∴∠EOC=80°+80°=160°.(8分)
∴∠OEC=10°.(10分)
B.选修4-2:矩阵与变换
解:设P(x,y)为曲线C2上任意一点,P′(x′,y′)为曲线C2上与P对应的点,
(5分)
∵P′是曲线C1上的点,∴C2的方程(x-2y)2+y2=1.(10分)
C.选修4-4:坐标系与参数方程
解:将曲线C1化成普通方程(x-1)2+y2=1,圆心是(1,0),
直线C2化成普通方程是y-2=0,则圆心到直线的距离为2.(5分)
∴曲线C1上点到直线的距离为1,该点为(1,1).(10分)
D.选修4-5:不等式选讲
证明:由柯西不等式,得:
++…+2≤(1+1+…+1)(Cn1+Cn2+…Cn2+)=n(2n-1)
++…+
点评:本题考查柯西不等式,点到直线的距离公式、弦长公式的应用,几种特殊的矩阵变换,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵
21
12
的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
设M=
.
10
02
.
,N=
.
1
2
0
01
.
,试求曲线y=sinx在矩阵MN变换下的曲线方程.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1(x≥1)
x2-y2=1(x≥1)

(C)选修4-5:不等式选讲
不等式|2-x|+|x+1|≤a对于任意x∈[0,5]恒成立的实数a的集合为
{a|a≥9}
{a|a≥9}

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E,F,求证:EF∥BC.
B.选修4-2:矩阵与变换
已知a,b∈R,若矩阵M=[
-1
b
a
3
]所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.
C.选修4-4:坐标系与参数方程将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t为参数)化为普通方程.
D.选修4-5:已知a,b是正数,求证(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个A.选修4-1(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.选修4-2(矩阵与变换)
将曲线xy=1绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
C.选修4-4(坐标系与参数方程)
求直线
x=1+2t
y=1-2t
(t为参数)被圆
x=3cosa
y=3sina
(α为参数)截得的弦长.
D.选修4-5(不等式选讲)
已知x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3

查看答案和解析>>

同步练习册答案