精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,一条准线方程为过椭圆的上顶点A作一条与x轴、y轴都不垂直的直线交椭圆于另一点PP关于x轴的对称点为Q

求椭圆的方程;

若直线APAQx轴交点的横坐标分别为mn,求证:mn为常数,并求出此常数.

【答案】1;(2)为常数2.

【解析】

利用,及其,解出即可得出;证法一:设P点坐标为,则Q点坐标为可得,直线AP的方程为,解得同理可得再利用在椭圆上,即可得出mn;解法二:设直线AP的斜率为,则AP的方程为,令,得联立,解得P,则可得Q点的坐标可得,可得直线AQ的方程,可得n,即可得出.

解得

故椭圆的方程为

证法一:设P点坐标为,则Q点坐标为

直线AP的方程为

,解得

直线AQ的方程为

,解得

在椭圆上,

,即

mn为常数,且常数为2

解法二:设直线AP的斜率为,则AP的方程为

,得

联立

消去y,得,解得

Q点的坐标为

故直线AQ的方程为

,得

为常数,常数为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1、F2,离心率为,且经过点.

(1)求椭圆C的方程;

(2)动直线与椭圆C相交于点M,N,椭圆C的左右顶点为,直线相交于点,证明点在定直线上,并求出定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

() 证明:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 的中点.

1证明 平面

2 求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知在四棱锥底面是矩形平面分别是线段的中点.

1判断并说明上是否存在点使得平面?若存在,求出的值;若不

存在,请说明理由

2与平面所成的角为求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且过点

求椭圆的标准方程;

设直线l经过点且与椭圆C交于不同的两点MN试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,过点P1,0)的直线l的参数方程为为参数, ),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知顶点在极轴上,开口向右的抛物线C经过极坐标为(2 )的点Q.

1)求C的极坐标方程;

2)若lC交于AB两点,且|PA|=2|PB|,求tan的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]已知直线l过原点且倾斜角为 ,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为psin =4cos.

(I)写出直线l的极坐标方程和曲线C 的直角坐标方程;

()已知直线l过原点且与直线l相互垂直,lC=-M,lC=N,其中M,N不与原点重合,求OMN 面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:

组别

频数

频率

145.5149.5

8

0.16

149.5153.5

6

0.12

153.5157.5

14

0.28

157.5161.5

10

0.20

161.5165.5

8

0.16

165.5169.5



合计



1)求出表中字母所对应的数值;

2)在给出的直角坐标系中画出频率分布直方图;

3)估计该校高一女生身高在149.5165.5范围内有多少人?

查看答案和解析>>

同步练习册答案