精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线Γy22pxp0)的焦点为FP是抛物线Γ上一点,且在第一象限,满足22

1)求抛物线Γ的方程;

2)已知经过点A3,﹣2)的直线交抛物线ΓMN两点,经过定点B3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.

【答案】1y24x;;(2)直线NL恒过定点(﹣30),理由见解析.

【解析】

1)根据抛物线的方程,求得焦点F0),利用22),表示点P的坐标,再代入抛物线方程求解.

2)设Mx0y0),Nx1y1),Lx2y2),表示出MN的方程yML的方程y,因为A3,﹣2),B3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y212,然后表示直线NL的方程为:yy1x),代入化简求解.

1)由抛物线的方程可得焦点F0),满足22)的P的坐标为(22),P在抛物线上,

所以(222p2),即p2+4p120p0,解得p2,所以抛物线的方程为:y24x

2)设Mx0y0),Nx1y1),Lx2y2),则y124x1y224x2

直线MN的斜率kMN

则直线MN的方程为:yy0x),

y①,

同理可得直线ML的方程整理可得y②,

A3,﹣2),B3,﹣6)分别代入①,②的方程

可得,消y0可得y1y212

易知直线kNL,则直线NL的方程为:yy1x),

yx,故yx

所以yx+3),

因此直线NL恒过定点(﹣30).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体中,底面是边长为的正方形,的中点,的中点.

1)求证:平面

2)若,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在直角梯形中,,点恰好在线段的垂直平分线上,以为折痕将折起,使点到达点的位置,且平面底面,如图2所示,是线段的中点.

1)证明:平面

2)若三棱锥的体积为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当a3时,求函数yfx)的图象在x0处的切线方程;

2)当x≥0时,fx≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高三学生的理科综合成绩是否与性别有关,某校课外学习兴趣小组在本地区高三年级理科班中随机抽取男、女学生各100名,然后对这200名学生在一次联合模拟考试中的理科综合成绩进行统计规定:分数不小于240分为优秀小于240分为非优秀

1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有90%以上的把握认为理科综合成绩是否优秀与性别有关.

性别

优秀

非优秀

总计

男生

35

女生

75

总计

2)用分层抽样的方法从成绩优秀的学生中随机抽取12名学生,然后再从这12名学生中抽取3名参加某高校举办的自主招生考试,设抽到的3名学生中女生的人数为X,求X的分布列及数学期望.

附:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:圆面积.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000,建筑容积约为340000,估计体育馆建筑高度(单位:)所在区间为( )

参考数据:

.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】牛顿迭代法(Newton's method)又称牛顿拉夫逊方法(NewtonRaphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设的根,选取作为初始近似值,过点作曲线的切线轴的交点的横坐标,称的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称的二次近似值.重复以上过程,直到的近似值足够小,即把作为的近似解.构成数列.对于下列结论:

.

其中正确结论的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于 两点.若直线斜率为 时, .

(1)求椭圆的标准方程;

(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

查看答案和解析>>

同步练习册答案