精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象经过点,且在区间上单调递减,在上单调递增.

)证明

)求的解析式;

)若对于任意的,不等式恒成立,试问:这样的是否存在,若存在,请求出的范围;若不存在,说明理由.

【答案】(Ⅰ)证明见解析(Ⅱ)(Ⅲ)存在,理由见解析

【解析】

()利用联立可证明;

()(1)可得,从而可得的解析式;

()将已知不等式恒成立转化为成立,然后分类讨论求出最大最小值代入即可解得.

)∵

由题设可知

由①得:,代入②得:

化简得:

)将代入①式得:,则

而又由,代入得

即为所求;

易知上均为增函数,在上为减函数.

因为对于任意的,不等式恒成立,等价于,

所以(i)当时,上递增.,,

,得.这与相矛盾故舍去;

)当时,上递减,在上递增,

,

因为,所以,

恒成立,

故当,原不等式恒成立.

综上:存在符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果,已知正方形的边长为2,平行轴,顶点分别在函数的图像上,则实数的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,把作为新数列的第一项,把)作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.

1)写出的所有可能值;

2)若生成数列满足,求数列的通项公式;

3)证明:对于给定的的所有可能值组成的集合为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,为自然对数的底数)的图象在点处的切线与该函数的图象恰好有三个公共点,求实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.

(1)求曲线的方程;

(2)已知点是曲线上但不在坐标轴上的任意一点,曲线轴的焦点分别为,直线分别与轴相交于两点,请问线段长之积是否为定值?如果还请求出定值,如果不是请说明理由;

(3)在(2)的条件下,若点坐标为(-1,0),设过点的直线相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的顶点为,底面圆心为,半径为

(1)设圆锥的母线长为,求圆锥的体积;

(2)设是底面半径,且为线段的中点,如图.求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆C1 和椭圆C2 的焦点相同且a1>a2.给出如下四个结论:

①椭圆C1和椭圆C2一定没有公共点;

a1a2<b1b2.

其中,所有正确结论的序号是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cmy cm,窗芯所需条形木料的长度之和为L

1)试用xy表示L

2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?

查看答案和解析>>

同步练习册答案