【题目】已知函数的图象经过点,且在区间上单调递减,在上单调递增.
(Ⅰ)证明;
(Ⅱ)求的解析式;
(Ⅲ)若对于任意的,,不等式恒成立,试问:这样的是否存在,若存在,请求出的范围;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点恰好是椭圆的右焦点.
(1)求实数的值及抛物线的准线方程;
(2)过点任作两条互相垂直的直线分别交抛物线于、和、点,求两条弦的弦长之和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,把作为新数列的第一项,把或()作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能值;
(2)若生成数列满足,求数列的通项公式;
(3)证明:对于给定的,的所有可能值组成的集合为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.
(1)求曲线的方程;
(2)已知点是曲线上但不在坐标轴上的任意一点,曲线与轴的焦点分别为,直线和分别与轴相交于两点,请问线段长之积是否为定值?如果还请求出定值,如果不是请说明理由;
(3)在(2)的条件下,若点坐标为(-1,0),设过点的直线与相交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆C1: 和椭圆C2: 的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
②;
③;
④a1-a2<b1-b2.
其中,所有正确结论的序号是( )
A. ②③④ B. ①③④
C. ①②④ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L.
(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com