精英家教网 > 高中数学 > 题目详情
19.已知圆C的方程为(x-1)2+(y-2)2=9,过点P(-2,4)作圆C的切线PA、PB,A、B为切点.
(1)求切线PA、PB的方程;
(2)求△PAB的面积.

分析 (1)分类讨论,切线斜率存在,设切线的斜率为k,切线方程为y-4=k(x+2),由点到直线的距离公式能求出切线的方程.
(2)求出四边形PACB的面积,S△ACB,即可求△PAB的面积.

解答 解:(1)切线斜率不存在时,直线x=-2,满足题意;
切线斜率存在时,设切线的斜率为k,切线方程为y-4=k(x+2),即kx-y+2k+4=0
由点到直线的距离公式得:$\frac{|3k+2|}{\sqrt{{k}^{2}+1}}$=3,解之得:k=$\frac{5}{12}$,方程为5x-12y+58=0.
故所求切线方程分别为:x=-2或,5x-12y+58=0.
(2)由题意,PC=$\sqrt{13}$,PA=PB=2,四边形PACB的面积为2×$\frac{1}{2}×2×3$=6,
sin∠BCP=$\frac{2}{\sqrt{13}}$,cos∠BCP=$\frac{3}{\sqrt{13}}$,
∴sin∠ACB=$\frac{12}{13}$,
∴S△ACB=$\frac{1}{2}×3×3×\frac{12}{13}$=$\frac{54}{13}$,
∴△PAB的面积S=6-$\frac{54}{13}$=$\frac{24}{13}$.

点评 本题主要考查直线和圆的位置关系的应用,利用直线和圆相切的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题是(  )
A.若$\overrightarrow{a}$与$\overrightarrow{b}$互为负向量,则$\overrightarrow{a}$+$\overrightarrow{b}$=0B.若 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若k为实数且k$\overrightarrow{a}$=$\overrightarrow{0}$,则k=0或$\overrightarrow{a}$=$\overrightarrow{0}$D.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x(0≤x≤5)}\\{0.05x+11(x>5)}\end{array}\right.$,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)工厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.三个数a=0.67,b=70.6,c=log0.76的大小关系为(  )
A.b<c<aB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过P(1,2)与直线x-2y+1=0垂直的直线方程为(  )
A.2x+y+4=0B.2x-y-4=0C.2x+y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.指出下列函数的最大值和最小值以及取得最值时x的值.
(1)y=2sin($\frac{1}{3}x+\frac{π}{3}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=2sin(2x-$\frac{π}{3}$)($\frac{π}{3}$≤x≤$\frac{5π}{6}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.要得到函数y=sin$\frac{1}{2}$x的图象,只需将函数y=sin($\frac{1}{2}$x+$\frac{π}{4}$)的图象(  )
A.向左平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{4}$个单位长度
C.向左平移$\frac{π}{2}$个单位长度D.向右平移$\frac{π}{2}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos(3x+$\frac{π}{4}$).
(1)求f(x)的单调递增区间.
(2)求f(x)的最小值及取得最小值时相应的x值.

查看答案和解析>>

同步练习册答案