精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项为a1=
2
3
an+1=
2an
an+2
(n∈Z*)
,则an=
an=
2
n+2
an=
2
n+2
分析:根据数列的递推公式,通过取倒数得到一个新数列,利用新数列的特点求数列的通项公式.
解答:解:由an+1=
2an
an+2
(n∈Z*)
,两边同时取倒数,得到
1
an+1
=
2+an
2an
=
1
an
+
1
2
,即
1
an+1
-
1
an
=
1
2

所以数列{
1
an
}是以
1
a1
=
3
2
为首项,d=
1
2
为公差的等差数列.
所以
1
an
=
3
2
+
1
2
(n-1)=
n+2
2
,即an=
2
n+2

故答案为:an=
2
n+2
点评:本题主要考查数列的通项公式,利用递推公式通过取倒数,将数列转化为一个新的等差数列,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an(n≥1).
(1)求数列{an}的通项公式;
(2)设b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn为数列{bn}的前n项和,求证:Tn
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2,时,an总是3Sn-4与2-
52
Sn-1
的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知数列{an}的首项a1=1,若?n∈N*,an•an+1=-2,则an=
1,n是正奇数
-2,n是正偶数
1,n是正奇数
-2,n是正偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=Sn•Sn-1(n≥2).
(1)求证:数列{
1Sn
}
是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
2
3
an+1=
2an
an+1
,n∈N+
(Ⅰ)设bn=
1
an
-1
证明:数列{bn}是等比数列;
(Ⅱ)数列{
n
bn
}的前n项和Sn

查看答案和解析>>

同步练习册答案