精英家教网 > 高中数学 > 题目详情

【题目】已知,直线是函数图象的一条对称轴.

(1)求的值,并求的解析式;

(2)若关于的方程在区间上有且只有一个实数解,求实数的取值范围;

(3)已知函数的图象是由图象上的所有点的横坐标伸长到原来的2倍,然后再向左平移个单位得到,若 ,求的值.

【答案】(1)答案见解析;(2) .(3)

【解析】试题分析:

(1)由三角函数的性质结合函数的对称轴可得,函数的 解析式.

(2)将原问题转化为在区间上有且只有一个交点,据此可得实数的取值范围是.

(3)经过平移变换和伸缩变换之后的表达式为.结合三角函数的性质可得的值是

试题解析:

(1) .

由于直线是函数图象的一条对称轴,∴.

因此 ,又,所以.

从而,所以 .

(2)在中,令,∴,∴

由已知在区间有且只有一个实数解,

即函数在区间上有且只有一个交点,

由函数的图象,知.

.

(2)由题意得.

,得.

,得.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)

无意愿

有意愿

总计

40

5

总计

25

80

(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;

(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.

附参考公式及数据: ,其中.

0.40

0.25

0.10

0.010

0.005

0.001

0.708

1.323

2.706

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有零点,求的取值范围;

(2)若对任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1, 分别是棱 的中点,过直线的平面分别与棱 交于 ,设 ,给出以下命题:

①四边形为平行四边形;

②若四边形面积 ,则有最小值;

③若四棱锥的体积 ,则为常函数;

④若多面体的体积 ,则为单调函数.

⑤当时,四边形为正方形.

其中假命题的个数为( )

A. 0 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知处的极值为0.

(1)求常数的值;

(2)求的单调区间;

(3)方程在区间上有三个不同的实根时,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间(满分100分,成绩不低于40分),现将成绩按如下方式分成6组:第一组;第二组;……;第六组,并据此绘制了如图所示的频率分布直方图.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,现提供的大致图象的8个选项:

(1)请你作出选择,你选的是( );

(2)对于函数图像的判断,往往只需了解函数的基本性质.为了验证你的选择的正确性,请你解决

下列问题:

的定义域是___________________;

②就奇偶性而言, 是______________________ ;

③当时, 的符号为正还是负?并证明你的结论.

(解决了上述三个问题,你要调整你的选项,还来得及.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的焦点,直线的斜率为为坐标原点.

(1)求椭圆的方程;

(2)设过点的直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

同步练习册答案