精英家教网 > 高中数学 > 题目详情
已知α,β都是锐角,且sin(α+β)=2sinα,求证:α<β.(用反证法证明)
考点:反证法与放缩法
专题:证明题,反证法
分析:假设α≥β,利用α,β都是锐角,可得sinα≥sinβ;根据sin(α+β)=2sinα,证明sinβ>sinα,从而可得结论.
解答: 证明:假设α≥β,则
∵α,β都是锐角,∴sinα≥sinβ
∵sin(α+β)=sinαcosβ+sinβcosα=2sinα,cosβ<1,
∴sinαcosβ<sinα
又∵sinαcosβ+sinβcosα=2sinα,∴sinβcosα>sinα
∵cosα<1,∴sinβ>sinα,矛盾
故α<β.
点评:本题的考点是反证法,主要考查反证法的运用,解题的关键是利用反证法的证题步骤:反设,归谬,引出矛盾,从而下结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

cos(-42°)•cos18°+sin42°sin(-18°)=
 
.cosα•cos(α+β)+sinαsin(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的右顶点A到左右两个焦点F1,F2距离分别为8和2.
(1)求椭圆的方程;
(2)设动点P满足PF22-PA2=4,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y属于实数,求
x2+y2
+
(x-1)2+y2
+
x2+(y-1)2
+
(x-1)2+(y-1)2
最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2
3

(I)求椭圆C的标准方程;
(Ⅱ)若直线AP的倾斜角为
4
,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,设集合A={x|-x2-2x+3≥0},B={x||x+1|>1},求:
(1)A∩B,A∪B;
(2)∁UA,∁UB;
(3)∁UA∩∁UB,∁UA∪∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:若p则q.其第一步是反设命题的结论不成立,这个正确的反设是(  )
A、若p,则¬qB、若¬p,则q
C、¬pD、¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,平面BB1C1C内到直线AA1和直线BC距离相等的点的轨迹是(  )
A、圆B、椭圆C、双曲线D、抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

若F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点,A、B是过焦点F1的弦,则△ABF2的周长为(  )
A、6B、4C、12D、8

查看答案和解析>>

同步练习册答案