【题目】如图,已知椭圆()与圆:在第一象限相交于点,椭圆的左、右焦点,都在圆上,且线段为圆的直径.
(1)求椭圆的方程;
(2)设过点的动直线与椭圆交于,两点,为坐标原点,证明:为定值,并求出这个定值.
【答案】(1);(2)证明见解析,定值为.
【解析】
(1)由圆的方程可得与轴的交点坐标即椭圆的焦点坐标,和圆的半径,由题意可得的值,再由存在求出,再由椭圆的定义可得椭圆的方程;
(2)分直线的斜率存在和不存在两种情况讨论,设直线的方程与椭圆联立求出两根之和及两根之积,进而求出数量积的值为定值.
解:(1)在圆的方程中,令,得,即,所以.
将圆的方程化为,则圆半径为,所以.
连结,因为点在圆上,为圆的直径,则.
又,则.
据椭圆定义,,则.
从而,所以椭圆的方程是;
(2)当直线的斜率存在时,设的斜率为,则的方程为,代入椭圆方程,得
,即.
设点,.则,.
所以
,
当的斜率不存在时,直线与轴重合,此时点,,,
综上分析,为定值.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆,点是它的右端点,弦过椭圆的中心,,.
(1)求椭圆的标准方程;
(2)设、为圆上不重合的两点,的平分线总是垂直于轴,且存在实数,使得,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.
(1)求曲线的普通方程和极坐标方程;
(2)设直线与曲线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某销售公司在当地、两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了、两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在与之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为元,求的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1尺.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:
①水深为12尺;②芦苇长为15尺;③;④.
其中所有正确结论的编号是( )
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则__________,__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com