【题目】已知数列的前项和为,且().
(1)求的通项公式;
(2)设, , 是数列的前项和,求正整数,使得对任意均有恒成立;
(3)设, 是数列的前项和,若对任意均有恒成立,求的最小值.
【答案】(1)(2)或5(3)
【解析】试题分析: (1)由 与 之间的关系求出 的通项公式; (2)先求出数列的通项公式,方法一是求出增减情况,正负情况,求出的最大项,方法二是求出的前n项和,再求出,得出的增减性,再求出的最大值; (3)用裂项相消法求出数列的前n项和, ,再求出的范围.
试题解析: 由,得 两式相减,得
∴
数列为等比数列,公比
又,得, ∴
(2)
,
方法一当时,
因此,
∴ 对任意均有,故或。
方法二(
两式相减,得
=,
,
当,当,当时, ,
综上,当且仅当或5时,均有
(3)∵
∴
∵对任意均有成立,
∴,
所以的最小值为
点睛: 本题主要考查了数列有关问题,涉及的知识点有求数列通项公式,用裂项相消法求和,判断数列的增减性等,属于中档题.
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形中, , , ,四边形为矩形, ,平面平面,点为线段中点.
(Ⅰ)求异面直线与所成的角的正切值;
(Ⅱ)求证:平面平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆.
(1)若椭圆的右焦点坐标为,求的值;
(2)由椭圆上不同三点构成三角形称为椭圆的内接三角形.若以为直角顶点的椭圆的内接等腰直角三角形恰有三个,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个正方体的展开图,如果将它还原为正方体,那么NC、DE、AF、BM这四条线段所在的直线是异面直线的有多少对?试以其中一对为例进行证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, , 在上,且∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b
(1)若时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com