精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且).

(1)求的通项公式;

(2)设 是数列的前项和,求正整数,使得对任意均有恒成立;

(3)设 是数列的前项和,若对任意均有恒成立,求的最小值.

【答案】(1)(2)5(3)

【解析】试题分析: (1)由 之间的关系求出 的通项公式; (2)先求出数列的通项公式,方法一是求出增减情况,正负情况,求出的最大项,方法二是求出的前n项和,再求出,得出的增减性,再求出的最大值; (3)用裂项相消法求出数列的前n项和 ,再求出的范围.

试题解析: ,得 两式相减,得

数列为等比数列,公比

,得

(2)

方法一当时,

因此,

∴ 对任意均有,故

方法二(

两式相减,得

=

,当,当时,

综上,当且仅当5时,均有

(3)∵

∵对任意均有成立,

所以的最小值为

点睛: 本题主要考查了数列有关问题,涉及的知识点有求数列通项公式,用裂项相消法求和,判断数列的增减性等,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,圆

1)过点的圆的切线只有一条,求的值及切线方程;

2)若过点且在两坐标轴上截距相等的直线被圆截得的弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中, ,四边形为矩形, ,平面平面,点为线段中点.

(Ⅰ)求异面直线所成的角的正切值;

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.

(1)若椭圆的右焦点坐标为,求的值;

(2)由椭圆上不同三点构成三角形称为椭圆的内接三角形.若以为直角顶点的椭圆的内接等腰直角三角形恰有三个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和 (n为正整数).
(1)求数列{an}的通项公式;
(2)令 ,Tn=c1+c2+…+cn , 求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知实数满足方程,当)时,由此方程可以确定一个偶函数,则抛物线的焦点到点的轨迹上点的距离最大值为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个正方体的展开图,如果将它还原为正方体,那么NC、DE、AF、BM这四条线段所在的直线是异面直线的有多少对?试以其中一对为例进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且∥面BDM.

(1)求直线PC与平面BDM所成角的正弦值;

(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b
(1)若时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.

查看答案和解析>>

同步练习册答案