A. | -$\frac{\sqrt{5}}{3}$ | B. | -$\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
分析 根据sin2α+cos2α=1,将等式两边平方得2sinαcosα的值及符号,再结合由α的范围确定cosα-sinα<0,求得(coα-sinα)2的值,再求出cosα-sinα的值,利用平方差公式得cos2α-sin2α=(cosα-sinα)(cosα+sinα),代入数据求值.
解答 解:∵sinα+cosα=$\frac{\sqrt{3}}{3}$,
∴(sinα+cosα)2=$\frac{1}{3}$,
解得2sinαcosα=-$\frac{2}{3}$<0,
∵α∈(0,π),∴sinα>0,cosα<0,即cosα-sinα<0,
又(cosα-sinα)2=1-2cosαsinα=$\frac{5}{3}$,
∴cosα-sinα=-$\frac{\sqrt{15}}{3}$,
∴cos2α-sin2α=(cosα-sinα)(cosα+sinα)=$-\frac{\sqrt{15}}{3}×\frac{\sqrt{3}}{3}=-\frac{\sqrt{5}}{3}$.
故选:A.
点评 本题主要考查了同角三角函数的关系,解题时借助于完全平方差公式的变形形式求得cosα-sinα的值,注意判断三角函数值的符号,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{6}π$ | B. | $\frac{1}{3}π$ | C. | $\frac{11}{6}π$ | D. | $\frac{2}{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com