精英家教网 > 高中数学 > 题目详情

已知x=的一个极值点
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间;
(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?

(1) b=" -1" (2)  (3) 过点(2,5)可作2条曲线y=g(x)的切线

解析试题分析:解:(1) 因x=-1是的一个极值点

即 2+b-1=0
∴b= -1经检验,适合题意,所以b= -1. (7分)
(2)  
>0
>0
∴x>∴函数的单调增区间为 (14分)
(3)=2x+lnx
设过点(2,5)与曲线g (x)的切线的切点坐标为

   ∴
令h(x)=
==0

∴h(x)在(0,2)上单调递减,在(2,)上单调递增
,h(2)=ln2-1<0,
∴h(x)与x轴有两个交点
∴过点(2,5)可作2条曲线y=g(x)的切线. ……(16分)
考点:导数的运用
点评:本试题主要是考查了导数的几何意义,以及函数极值和最值的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数无零点,求实数的取值范围;
(Ⅱ)若函数有且仅有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,满足
(1)若方程有唯一的解;求实数的值;
(2)若函数在区间上不是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
①当时,求函数的表达式;
②若,函数上的最小值是2 ,求的值;
③在②的条件下,求直线与函数的图象所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知定义域为的函数是奇函数。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
定义在上的函数满足:①对任意都有
 在上是单调递增函数;③.
(Ⅰ)求的值;
(Ⅱ)证明为奇函数;
(Ⅲ)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分7分)
已知函数
(Ⅰ)当时,求函数的定义域;
(Ⅱ)当函数的定义域为R时,求实数的取值范围。

查看答案和解析>>

同步练习册答案