精英家教网 > 高中数学 > 题目详情
三棱锥的高为,若三个侧面两两垂直,则一定为△的(   )
A.垂心 B.外心C.内心D.重心
A

试题分析:因为三个侧面两两垂直,所以。连结AH并延长交BC于点D。由知,①,由是三棱锥的高得,②。由①②得,。同理:连结BH并延长交AC于点E、连结CH并延长交AB于点F,则。所以,点H是三角形三边上高的交点,即H是三角形的垂心。
点评:本题需要掌握好三角形的各种“心”。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,的交点,平面是侧棱的中点,异面直线所成角的大小是60.

(Ⅰ)求证:直线平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体中,面中心为

(1)求证:
(2)求异面直线所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四棱锥的底面是正方形,侧棱与底面边长均为2,则其侧视图的面积为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,四棱锥中,平面,四边形是矩形,分别是的中点.若

(1)求证:平面
(2)求直线平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四个结论中正确的是           
①AB∥CD ②AB⊥AD ③|AC|=|BD| ④AC⊥BD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,正确的是
A.棱柱的侧面可以是三角形
B.由六个大小一样的正方形所组成的图形是正方体的展开图
C.正方体的各条棱都相等
D.棱柱的各条棱都相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、已知一个球的表面积为,则这个球的体积为           

查看答案和解析>>

同步练习册答案