分析 (1)过N作NE∥BC,交PB于点E,连AE,推导出四边形AMNE是平行四边形,从而MN∥AE,由此能证明MN∥平面PAB.
(2)连接AC,推导出AC⊥AB,PA⊥AC,从而AC⊥平面PAB,由此能求出N点到平面PAB的距离.
解答 证明:(1)过N作NE∥BC,交PB于点E,连AE,
∵CN=3NP,∴EN∥BC且EN=$\frac{1}{4}$BC,
又∵AD∥BC,BC=2AD=4,M为AD的中点,
∴AM∥BC且AM=$\frac{1}{4}$BC,
∴EN∥AM且EN=AM,
∴四边形AMNE是平行四边形,∴MN∥AE,
又∵MN?平面PAB,AE?平面PAB,
∴MN∥平面PAB.…(6分)
解:(2)连接AC,在梯形ABCD中,
由BC=2AD=4,AB=CD,∠ABC=60°,得AB=2,
∴AC=2$\sqrt{3}$,AC⊥AB.
∵PA⊥平面ABCD,∴PA⊥AC.
又∵PA∩AB=A,∴AC⊥平面PAB.
又∵CN=3NP,
∴N点到平面PAB的距离d=$\frac{1}{4}$AC=$\frac{\sqrt{3}}{2}$.…(12分)
点评 本题考查线面平行的证明,考查点到平面的距离的求不地,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1,2,3} | B. | {2,3} | C. | {0,1,2} | D. | {0,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2或4 | B. | 1或4 | C. | 1或2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com