精英家教网 > 高中数学 > 题目详情

【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
( i)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是 .若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

【答案】解:(Ⅰ)( i)由题意,从全市居民中依次随机抽取5户,每户居民月用水量超过12吨的概率为 ,因此这5户居民恰好3户居民的月用水用量都这超过12吨的概率为 . ( ii)由题设条件及月均用水量的频率分布直方图,可得居民每月的水费数据分组与概率分布表如下:

月用水量x(吨)

(0,12]

(12,14]

(14,16]

价格X(元/吨)

4

4.20

4.60

概率P

0.9

0.06

0.04

所以全市居民用水价格的期望E(X)=4×0.9+4.2×0.06+4.6×0.04≈4.04吨
(Ⅱ)设李某2016年1~6月份的月用水费y(元)与月份x的对应点为(xi , yi)(i=1,2,3,4,5,6),
它们的平均值分别为 ,则 ,又点 在直线 上,所以 ,因此y1+y2+…+y6=240,所以7月份的水费为294.6﹣240=54.6元.
设居民月用水量为t吨,相应的水费为f(t)元,则f(t)=
t=13,f(t)=6.6×13﹣31.2=54.6,
∴李某7月份的用水吨数约为13吨
【解析】(Ⅰ)( i)由题意,从全市居民中依次随机抽取5户,每户居民月用水量超过12吨的概率为 ,即可求这5户居民恰好3户居民的月用水用量都超过12吨的概率;(ⅱ)由题设条件及月均用水量的频率分布直方图,可得居民每月的水费数据分组与概率分布表,即可估计全市居民用水价格的期望(精确到0.01);(Ⅱ)求出7月份的水费为294.6﹣240=54.6元.居民月用水量为t吨,相应的水费为f(t)元,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在道路边安装路灯,路面,灯柱高14,灯杆与地面所成角为30°.路灯采用锥形灯罩,灯罩轴线与灯杆垂直,轴线,灯杆都在灯柱和路面宽线确定的平面内.

(1)当灯杆长度为多少时,灯罩轴线正好通过路面的中线?

(2)如果灯罩轴线AC正好通过路面的中线,此时有一高2.5 的警示牌直立在处,求警示牌在该路灯灯光下的影子长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表

分组

频数

频率

10

20

50

20

合计

100

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面积;
(Ⅱ)若D,E在线段BC上,且BD=DE=EC, ,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e2x(ax2+2x﹣1),a∈R.
(Ⅰ)当a=4时,求证:过点P(1,0)有三条直线与曲线y=f(x)相切;
(Ⅱ)当x≤0时,f(x)+1≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( ) (参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)时,求函数的单调递增区间;

(2)求函数的零点个数.

查看答案和解析>>

同步练习册答案