精英家教网 > 高中数学 > 题目详情

【题目】已知集合A{x|1x6}B{x|2x10}C{x|5axa}

1)求AB,(RAB

2)若CB,求实数a的取值范围.

【答案】(1)AB{x|1x10},RAB{x|6≤x10} ;(2).

【解析】

1)进行并集、交集和补集的运算即可;

2)根据CB,可讨论C是否为空集:C时,5aaC时,,这样即可得出实数a的取值范围.

1)∵A{x|1x6}B{x|2x10}

AB{x|1x10}RA{x|x≤1,或x≥6}

∴(RAB{x|6≤x10}

2)∵CB

C时,5aa

C时,则

解得

综上得,a≤3

a的取值范围是(﹣3]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=sinx++sinx-+2cos2ωx,其中ω0,且函数fx)的最小正周期为π

1)求ω的值;

2)求fx)的单调增区间

3)若函数gx=fx-a在区间[-]上有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.

(1)求此次参加竞赛的学生总数共有多少人?

(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?

(参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(为常数).

(1)当时,判断的单调性,并用定义证明;

(2)若对任意,不等式恒成立,求的取值范围;

(3)讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)对任意实数xy恒有fx+y)=fx+fy)且当x0fx)<0

给出下列四个结论:

f0)=0 fx)为偶函数;

fx)为R上减函数; fx)为R上增函数.

其中正确的结论是(  )

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 =1(a>b>0)的左焦点为F,离心率为 ,过点F且与x轴垂直的直线被椭圆截得的线段长为
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若 =8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近13年的宣传费和年销售量 数据作了初步处理,得到散点图及一些统计量的值.

由散点图知,按建立关于的回归方程是合理的.令,则,经计算得如下数据:

10.15

109.94

0.16

-2.10

0.21

21.22

最小二乘法求线性回归方程系数公式

Ⅰ)根据以上信息,建立关于的回归方程;

Ⅱ)已知这种产品的年利润的关系为.根据(1)的结果,求当年宣传费时,年利润的预报值是多少?

查看答案和解析>>

同步练习册答案