【题目】已知点为圆, , 是圆上的动点,线段的垂直平分线交于点.
(1)求点的轨迹的方程;
(2)设, ,过点的直线与曲线交于点(异于点),过点的直线与曲线交于点,直线与倾斜角互补.
①直线的斜率是否为定值?若是,求出该定值;若不是,说明理由;
②设与的面积之和为,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)本问考查曲线轨迹方程的求法,画出图形分析可有, ,于是点的轨迹是以点为焦点,焦距为,长轴为的椭圆,可求出方程;(2)①本问考查直线与椭圆的位置关系,由于直线与倾斜角互补,所以斜率互为相反数,设的方程为,与椭圆方程联立,消元,得到关于x的一元二次方程,根据韦达定理可以求出点M的坐标,设的方程为,同理可以求出点N的坐标,于是可以求出直线MN的斜率,并判断是否为定值;②由于直线MN的斜率为定值,所以设直线的方程为,与椭圆方程联立,求出弦长,再分别求点A,B到直线MN的距离,于是可以得到与的面积之和为,再讨论求出取值范围.
试题解析:(1)由题意.
∴点的轨迹是以点为焦点,焦距为,长轴为的椭圆,
所以,
所以点的轨迹方程是
(2)①设的方程为, 联立方程,得
,
设与椭圆除外的另一个交点,则, ,
代入的方程得,所以,
因为倾斜角互补,所以的方程为,
联立方程组,得,
设与椭圆除外的另一个交点,则, ,
代入的方程得,所以,
∴直线的斜率为.
②设直线的方程为,联立方程,得,
由得,设,则,
∴.
设分别为点到直线的距离, 则
,
当时, ,
当时, ,
当时, ,
∴的取值范围为.
科目:高中数学 来源: 题型:
【题目】在△ABC中,点A(1,1),B(0,﹣2),C(4,2),D为AB的中点,DE∥BC. (Ⅰ)求BC边上的高所在直线的方程;
(Ⅱ)求DE所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各式的大小关系正确的是( )
A.sin11°>sin168°
B.sin194°<cos160°
C.tan(﹣ )<tan(﹣ )
D.cos(﹣ )>cos
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题;
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)根据频率分布直方图,估计该班数学成绩的平均数与中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 |
语文成绩 | 60 | 70 | 74 | 90 | 94 | 110 |
历史成绩 | 58 | 63 | 75 | 79 | 81 | 88 |
(1)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(2)用上表数据画出散点图易发现历史成绩与语文成绩具有较强的线性相关关系,求与的线性回归方程(系数精确到0.1).
参考公式:回归直线方程是,其中,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过两点, ,且圆心在直线上.
(Ⅰ)求圆的标准方程;
(Ⅱ)直线过点且与圆有两个不同的交点, ,若直线的斜率大于0,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点为的中点.
(Ⅰ)求证: 面 ;
(Ⅱ)在边上找一点,使∥面,
并求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)一块长为、宽为的长方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为的函数;
(Ⅱ)试求方盒容积V的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com