精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
 
(1)证明:见解析;(2)点A到平面PBC的距离等于
本题考查线面平行,线面垂直,线线垂直,考查点到面的距离,解题的关键是掌握线面平行,线面垂直的判定方法,利用等体积转化求点面距离
(1)利用线面垂直证明线线垂直,即证BC⊥平面PCD;
(2)利用等体积转化求点A到平面PBC的距离.
(1)证明:∵ PD⊥平面ABCD,BC 平面ABCD,∴ PD⊥BC.
由∠BCD=90°,得CD⊥BC.又PD∩DC=D,PD,DC 平面PCD,
∴ BC⊥平面PCD.∵ PC 平面PCD,
故PC⊥BC.-------------------4分
(2)解:(方法一)分别取AB,PC的中点E,F,连DE,DF, 则易证DE∥CB,DE∥平面PBC,点D,E到平面PBC的距离相等.
又点A到平面PBC的距离等于点E到平面PBC的距离的2倍,由(1)知,BC⊥平面PCD,
∴平面PBC⊥平面PCD.
∵ PD=DC,PF=FC,∴ DF⊥PC.
平面PBC∩平面PCD=PC,∴ DF⊥平面PBC于F.
易知DF=,故点A到平面PBC的距离等于.--12分
(方法二):连接AC,设点A到平面PBC的距离为h.
∵ AB∥DC,∠BCD=90°,∴ ∠ABC=90°.
由AB=2,BC=1,得△ABC的面积S△ABC=1.
由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积
V=SABC·PD=.∵ PD⊥平面ABCD,DC平面ABCD,∴ PD⊥DC.
∴ PD=DC=1,∴ PC=
由PC⊥BC,BC=1,得△PBC的面积S△PBC
∵ VA - PBC=VP - ABC,∴ S△PBC·h=V=
得h=
故点A到平面PBC的距离等于.----------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分) 如图,直三棱柱中, ,.
(Ⅰ)证明:
(Ⅱ)求二面角的正切值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分 )如图,在三棱柱中,所有的棱长都为2,.
  
(1)求证:
(2)当三棱柱的体积最大时,
求平面与平面所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)如图,在四棱锥中,底面是矩形,平面与平面所成角的正切值依次是依次是的中点.
(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱柱中,侧面⊥底面,底面为直角梯形,其中
,O为中点.

(Ⅰ)求证:平面 ;
(Ⅱ)求锐二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图5,已知直角梯形所在的平面垂直于平面

.  
(1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线∥平面,直线,则的位置关系是           (  )
A.B.异面
C.相交D.没有公共点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,侧棱长为的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40
过A作截面AEF,则截面△AEF周长的最小值为           

查看答案和解析>>

同步练习册答案