精英家教网 > 高中数学 > 题目详情

函数y=f(x)对任意实数x、y满足f(x)+f(y-x)=f(y),且当x>0时,f(x)<0.
(1)求证:y=f(x)是奇函数;
(2)判断y=f(x)的单调性,并证明;
(3)对任意t∈[1,2],f(tx2-2x)<f(t+2)恒成立,求x的范围.

(1)证明:令x=y=0,代入f(x)+f(y-x)=f(y),那么f(0)+f(0)=f(0),所以f(0)=0 再令y=0,那么f(x)+f(-x)=f(0)=0,所以f(-x)=-f(x),
所以函数y=f(x)是奇函数;
(2)解:函数y=f(x)在整个R上是减函数
证明:令y>x,则y-x>0,
∵f(x)+f(y-x)=f(y),
∴f(y)-f(x)=f(y-x),
因为当x>0,f(x)<0,而y-x>0,所以f(y-x)<0 所以f(y)-f(x)<0,
即y>x,f(y)<f(x),
所以函数y=f(x)在整个R上是减函数;
(3)解:对任意t∈[1,2],f(tx2-2x)<f(t+2)恒成立
∴对任意t∈[1,2],tx2-2x>t+2恒成立
∴对任意t∈[1,2],(x2-1)t-2x-2>0恒成立,
令函数h(t)=(x2-1)t-2x-2
分三种情况:i、当x2-1=0时,x=1或-1,代入发现不符合(x2-1)t-2x-2>0
ii、当x2-1>0,即x>1或x<-1时,函数h(t)=(x2-1)t-2x-2是增函数,所以最小值为h(1)=x2-2x-3=(x+1)(x-3)>0,
所以x>3或x<-1
所以最后符合的解是:x>3或x<-1
iii、当x2-1<0,即-1<x<1时,函数h(t)=(x2-1)t-2x-2是减函数,所以最小值是h(2)=2x2-2x-4=2(x+1)(x-2)>0,
所以x>2或x<-1,与-1<x<1矛盾
综上知x的范围是:x>3或x<-1
分析:(1)对x,y分别进行赋值,结合f(x)+f(y-x)=f(y),利用奇函数的定义可证明;
(2)利用单调性的定义,结合当x>0时,f(x)<0,取y>x,则y-x>0,所以f(y-x)<0,利用当x>0时,f(x)<0,即可证得;
(3)利用(2)的结论,将抽象不等式化为具体不等式,变换主元,构建一次函数,即可解决.
点评:本题以函数的性质为载体,考查赋值法的运用,考查函数单调性的判断与证明,同时考查变换主元思想的运用,解题时合理运用函数的性质是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为
-
2
3
-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市十一校高三联考数学试卷(解析版) 题型:解答题

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

同步练习册答案