【题目】已知数列{an}的通项公式为an= ,n∈N*
(1)求数列{ }的前n项和Sn
(2)设bn=anan+1 , 求{bn}的前n项和Tn .
【答案】
(1)解:由an= ,n∈N*,
∴ = =4n﹣1,
∴数列{ }是以3为首项,以4为公差的等差数列,
∴数列{ }的前n项和Sn= =2n2+n
(2)解:bn=anan+1= = ( ﹣ ),
∴{bn}的前n项和Tn,Tn=b1+b2+b3+…+bn,
= [(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ )],
= (1﹣ ),
= ,
Tn=
【解析】(1)由an= ,n∈N* , 则 = =4n﹣1,数列{ }是以3为首项,以4为公差的等差数列,根据等差数列前n项和公式,即可求得Sn;(2)由bn=anan+1= = ( ﹣ ),采用“裂项法”,即可求得{bn}的前n项和Tn .
【考点精析】关于本题考查的数列的前n项和和数列的通项公式,需要了解数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.
(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品有4件正品和2件次品混在了一起,现要把这2件次品找出来,为此每次随机抽取1件进行测试,测试后不放回,直至次品全部被找出为止.
(1)求“第1次和第2次都抽到次品”的概率;
(2)设所要测试的次数为随机变量X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(﹣x)+f(x+3)=0;当x∈(0,3)时,f(x)= ,其中e是自然对数的底数,且e≈2.72,则方程6f(x)﹣x=0在[﹣9,9]上的解的个数为( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)求函数f(x)的单调区间;
(2)若g(x)=xf(x)+mx在区间(0,e]上的最大值为﹣3,求m的值;
(3)若x≥1时,有不等式f(x)≥ 恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣ax+b(a>0,b>0)有两个不同的零点m,n,且m,n和﹣2三个数适当排序后,即可成为等差数列,也可成为等比数列,则a+b的值为( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com