精英家教网 > 高中数学 > 题目详情
16.已知直线y=x-b与曲线C:y=$\sqrt{1-{x}^{2}}$-1有唯一交点,则b的取值范围是(  )
A.{-$\sqrt{2}$-1,$\sqrt{2}$-1}B.{-$\sqrt{2}$+1,$\sqrt{2}$+1}C.[-2,0]D.(0,2]∪{1-$\sqrt{2}$}

分析 画出曲线C:y=$\sqrt{1-{x}^{2}}$-1和直线y=x-b的图象,数形结合可得答案.

解答 解:曲线C:y=$\sqrt{1-{x}^{2}}$-1可化为:x2+(y+1)2=1,(-1≤y≤0),
其图象是如下图所示的半圆,

当0<b≤2时,直线y=x-b与曲线C只有一个交点,满足条件;
当b=1-$\sqrt{2}$时,直线y=x-b与曲线C相切也只有一个交点,满足条件;
综上所述,b的取值范围是(0,2]∪{1-$\sqrt{2}$},
故选:D

点评 本题考查的知识点是函数的图象,直线与圆的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设数列{an}满足a1=a,an+1an-an2=1(n∈N*
(I)若a3=$\frac{5}{2}$,求实数a的值;
(Ⅱ)设bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*).若a=1,求证$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=6,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{4}$,求$\overrightarrow{a}$•$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)是偶函数,且f(1)>f(-2),则f(1)>f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若2bccosBcosC=b2sin2C+c2sin2B,那么△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(1,2),B(5,-2),且$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{AB}$,求向量$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知2($\overrightarrow{a}$+$\overrightarrow{x}$)=3($\overrightarrow{b}$-$\overrightarrow{x}$),则$\overrightarrow{x}$=$\frac{3}{5}$$\overrightarrow{b}$-$\frac{2}{5}$$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2).
(1)当k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°时,求k的值;
(2)问:是否存在实数k使得k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直?请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知线段AB两端点的坐标分别为A(-1,2),B(4,3),若直线1:mx+y-2m=0与线段AB有交点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案