精英家教网 > 高中数学 > 题目详情

D,E,F分别是ABC的边AB,BC,CA的中点,则         (    )

A.            B.

C.            D.         

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分别是AB、AA1、CC1的中点,P是CD上的点.
(1)求直线PE与平面ABC所成角的正切值的最大值;
(2)求证:直线PE∥平面A1BF;
(3)求直线PE与平面A1BF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图△ABC中,D,E,F分别是AB,AC,BC的中点,则下列各式不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)如图(1)在等腰△ABC中,D,E,F分别是AB,AC和BC边的中点,∠ACB=120°,现将△ABC沿CD翻折成直二面角A-DC-B.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP⊥DE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏)如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1:V2=
1:24
1:24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)如图(1)在等腰△ABC中,D、E、F分别是AB、AC、BC边的中点,现将△ACD沿CD翻折,使得平面ACD⊥平面BCD.(如图(2))
(1)求证:AB∥平面DEF;
(2)求证:BD⊥AC;
(3)设三棱锥A-BCD的体积为V1、多面体ABFED的体积为V2,求V1:V2的值.

查看答案和解析>>

同步练习册答案