分析 (1)由解析式求出函数的定义域,化简f(-x)后由函数奇偶性的定义即可判断;
(2)先判断出函数的单调性,再利用函数单调性的定义证明.
解答 解:(1)函数$f(x)=x+\frac{1}{x}$是奇函数,
函数$f(x)=x+\frac{1}{x}$的定义域是{x|x≠0},
因为$f(-x)=-x-\frac{1}{x}$=-f(x),
所以函数f(x)数奇函数;
(2)函数$f(x)=x+\frac{1}{x}$在[1,+∞)上是增函数,
证明:设x1>x2≥1,
则f(x1)-f(x2)=${x}_{1}+\frac{1}{{x}_{1}}$-(${x}_{2}+\frac{1}{{x}_{2}}$)
=(x1-x2)+$\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$=(x1-x2)+$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}$
=(x1-x2)(1-$\frac{1}{{x}_{1}{x}_{2}}$)=$\frac{({x}_{1}-{x}_{2})({x}_{1}{x}_{2}-1)}{{x}_{1}{x}_{2}}$,
∵x1>x2≥1,∴x1-x2>0,x1x2-1>0,x1x2>0,
∴$\frac{({x}_{1}-{x}_{2})({x}_{1}{x}_{2}-1)}{{x}_{1}{x}_{2}}>$0,
∴f(x1)-f(x2)>0,则f(x1)>f(x2),
∴函数$f(x)=x+\frac{1}{x}$在[1,+∞)上是增函数.
点评 本题考查函数的奇偶性、单调性的判断以及证明,考查化简、变形能力,属于中档题.
科目:高中数学 来源: 题型:解答题
月份 | 1 | 2 | 3 | 4 |
产量(万双) | 1.02 | 1.10 | 1.16 | 1.18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,3] | B. | (1,3) | C. | $[{\frac{1}{2},\frac{3}{2}}]$ | D. | $({\frac{1}{2},\frac{3}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-\frac{11}{3},\frac{13}{3}})$ | B. | $({\frac{1}{3},\;\frac{7}{3}})$ | C. | $({-\frac{5}{3},\frac{55}{3}})$ | D. | $({-\frac{5}{3},\;\frac{7}{3}})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com