【题目】如图,已知抛物线:和⊙ ,过抛线上一点 作两条直线与⊙相切于A、B两点,分别交抛物线于E、F两点,圆心点到抛物线准线的距离为 .
(Ⅰ)求抛物线的方程;
(Ⅱ)当 的角平分线垂直x轴时,求直线EF的斜率;
(Ⅲ)若直线AB在轴上的截距为,求的最小值.
科目:高中数学 来源: 题型:
【题目】已知点是椭圆C:上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆C于B,D两点,且A、B、D三点互不重合.
(1)求椭圆C的方程;
(2)若分别为直线AB,AD的斜率,求证:为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,的最大值为1.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有限数列,定义集合为数列的伴随集合.
(Ⅰ)已知有限数列和数列.分别写出和的伴随集合;
(Ⅱ)已知有限等比数列,求的伴随集合中各元素之和;
(Ⅲ)已知有限等差数列,判断是否能同时属于的伴随集合,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.
(1)依据数据的散点图可以看出,可用线性回归模型拟合与的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);
(2)求关于的回归方程,并预测液体肥料每亩使用量为千克时,西红柿亩产量的增加量约为多少?
附:相关系数公式,回归方程中斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com