精英家教网 > 高中数学 > 题目详情
15.设f(x)为定义在R上的可导函数,e为自然对数的底数.若f'(x)lnx>$\frac{f(x)}{x}$,则(  )
A.f(2)<f(e)ln2,2f(e)>f(e2B.f(2)<f(e)ln2,2f(e)<f(e2
C.f(2)>f(e)ln2,2f(e)<f(e2D.f(2)>f(e)ln2,2f(e)>f(e2

分析 构造函数g(x),求出函数的单调性,从而求出函数值的大小即可.

解答 解:令g(x)=$\frac{f(x)}{lnx}$,
则g′(x)=$\frac{f′(x)lnx-f(x)•\frac{1}{x}}{{(lnx)}^{2}}$,
∵f'(x)lnx>$\frac{f(x)}{x}$,
∴g′(x)>0,
∴g(x)在R递增,
∴g(2)<g(e)<g(e2),
∴f(2)<f(e)ln2,2f(e)<f(e2),
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),y=f(x)的部分图象如图,则f($\frac{π}{2}$)=(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a>0,函数f(x)=cosx(2asinx-cosx)+sin2x的最大值为2.
(1)求函数f(x)的单调递减区间;
(2)设△ABC三内角A,B,C所对边分别为a,b,c且$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}-{c}^{2}}$=$\frac{c}{2a-c}$,求f(x)在[B,$\frac{π}{2}}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{2x-1}{x-2}$≥1的解集为{x|x>2或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐标原点为点O,有顶点坐标为(2,0),离心率e=$\frac{{\sqrt{3}}}{2}$,过椭圆右焦点倾斜角为30°的直线交椭圆与点A,B两点.
(1)求椭圆的方程.
(2)求三角形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.极坐标方程θ=$\frac{π}{6}$(ρ∈R)表示的曲线是一条(  )
A.射线B.直线
C.垂直于极轴的直线D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=cosx-lnx,实数a,b,c满足f(a)f(b)f(c)<0(0<a<b<c<π),若实数x0是f(x)=0的根,那么下列不等式中不可能成立的是(  )
A.x0<cB.x0>cC.x0<bD.x0>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别是a,b,c,满足2acosC+c=2b.
(1)求角A的大小;
(2)若a=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有某单位在2016年的招聘考试中100名竞聘者的笔试成绩,按成绩分组为:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该单位决定在第3,4,5组中用分层抽样的方法抽取6名竞聘者进入A组面试,求第3,4,5组每组各抽取多少名竞聘者进入该组面试?
(3)在(2)的前提下,该单位决定在这6名竞聘者中随机抽取2名竞聘者接受总经理的面试,求第4组至少有一名竞聘者被总经理面试的概率.

查看答案和解析>>

同步练习册答案