精英家教网 > 高中数学 > 题目详情

【题目】【2016高考北京文数】已知椭圆C:过点A(2,0),B(0,1)两点.

I)求椭圆C的方程及离心率;

(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

【答案】(Ⅰ)(Ⅱ)见解析.

【解析】

试题分析:(Ⅰ)根据两顶点坐标可知a,b的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形的面积等于对角线乘积的一半,分别求出对角线的值求乘积为定值即可.

试题解析:(I)由题意得,

所以椭圆的方程为

所以离心率

(II)设),则

,所以,

直线的方程为

,得,从而

直线的方程为

,得,从而

所以四边形的面积

从而四边形的面积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系,曲线的参数方程为为参数). 是曲线上两点,点的极坐标分别为.

1)写出曲线的普通方程和极坐标方程;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考浙江文数】如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.

(I)求p的值;

(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x

轴交于点M.求M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和Sn满足:2Sn=3an﹣6n(n∈N*) (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,其中常数λ>0,若数列{bn}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA= acosB. (Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【天津市红桥区重点中学八校2017届高三4月联考数学(文)】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点

(1)求椭圆的方程;

(2)已知是椭圆上的两点, 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;

②当 运动时,满足,试问直线的斜率是否为定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若处相切,试求的表达式;

(Ⅱ)若上是减函数,求实数的取值范围;

(Ⅲ)证明不等式:.

查看答案和解析>>

同步练习册答案