精英家教网 > 高中数学 > 题目详情

【题目】如图,气象部门预报,在海面上生成了一股较强台风,在据台风中心60千米的圆形区域内将受到严重破坏,台风中心这个从海岸M点登陆,并以72千米/小时的速度沿北偏西60°的方向移动,已知M点位于A城的南偏东15°方向,距A城 千米;M点位于B城的正东方向,距B城 千米,假设台风在移动的过程中,其风力和方向保持不变,请回答下列问题:
(1)A城和B城是否会受到此次台风的侵袭?并说明理由;
(2)若受到此次台风的侵袭,改城受到台风侵袭的持续时间有多少小时?

【答案】
(1)解:设台风中心运行的路线为射线MN,于是∠AMN=60°﹣15°=45°.

过A作AH⊥MN于H,故AMH是等腰直角三角形.

∵AM=61 ,∠AMH=60°﹣15°=45°,

∴AH=AMsin45°=61>60.

∴A城不会受到台风的影响;

过B作BH1⊥MN于H1

∵MB=60 ,∠BMN=90°﹣60°=30°,

∴BH1= ×60 <60,

因此B城会受到台风的影响.


(2)解:以B为圆心60km为半径作圆与MN交于T1、T2,则BT1=BT2=60.

在Rt△BT1H1中,sin∠BT1H1= =

∴∠BT1H1=60°.

∴△BT1T2是等边三角形.

∴T1T2=60.

∴台风中心经过线段T1T2上所用的时间 = 小时.

因此B城受到台风侵袭的时间为 小时.


【解析】(1)过A作AH⊥MN于H,故AMH是等腰直角三角形,可求出AM,则可以判断A城是否会受到此次台风的侵袭. 同理,过B作BH1⊥MN于H1 , 求出BH1 , 可以判断B城是否会受到此次台风的侵袭.(2)求该城市受到台风侵袭的持续时间,以B为圆心60km为半径作圆与MN交于T1、T2 , 则T1T2就是台风影响时经过的路径,求出后除以台风的速度就是时间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知与曲线相切的直线,与轴, 轴交于两点, 为原点, ,( .

1)求证: 相切的条件是: .

2)求线段中点的轨迹方程;

3)求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若讨论的单调性;

(Ⅱ)若过点可作函数图象的两条不同切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列 的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.

日销售量(枝)

销售天数

3天

5天

13天

6天

3天

(1)试求这30天中日销售量低于100枝的概率;

(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=sin(2x+ ),下列命题: ①函数图象关于直线x=﹣ 对称;
②函数图象关于点( ,0)对称;
③函数图象可看作是把y=sin2x的图象向左平移个 单位而得到;
④函数图象可看作是把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变)而得到;其中正确的命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

查看答案和解析>>

同步练习册答案