精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)满足:当x≥3时.f(x)=($\frac{1}{2}$)x;当x<3时,f(x)=f(x+1),则f($\frac{5}{2}$)的值为(  )
A.$\frac{\sqrt{2}}{16}$B.$\frac{\sqrt{3}}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{\sqrt{3}}{32}$

分析 利用函数的解析式和已知条件,求解f($\frac{5}{2}$)的值.

解答 解:函数f(x)满足:当x≥3时.f(x)=($\frac{1}{2}$)x;当x<3时,f(x)=f(x+1),
则f($\frac{5}{2}$)=f($\frac{5}{2}+1$)=f($\frac{7}{2}$)=$(\frac{1}{2})^{\frac{7}{2}}$=$\frac{1}{8\sqrt{2}}$=$\frac{\sqrt{2}}{16}$.
故选:A.

点评 本题考查函数的值的求法,函数的解析式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若正数m,n满足m+3n=5mn,则3m+4n的最小值为(  )
A.$\frac{24}{5}$B.$\frac{28}{5}$C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的定义域为R,且f′(x)>1-f(x),f(0)=2,则不等式f(x)>1+e-x解集为(  )
A.(-1,+∞)B.(e,+∞)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sin2α=$\frac{\sqrt{3}}{2}$,α是第一象限的角,则sinα=$\frac{\sqrt{3}}{2}$或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若y=(a-3)•(a-2)x是指数函数,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数f(x)=x2+2ax+a-1,a为常数.
(1)设函数F(x)=f(x)-ax+1,若F(x)有唯一零点,求a的值.
(2)求函数f(x)在[-1,2]上的最小值g(a)的解析式;
(3)在(2)的条件下,是否存在最小的整数m,使得g(a)-m≤0对于任意的a∈R均成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下列函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=3x+3-x
C.y=1gx+$\frac{1}{lgx}$(0<x<1)D.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设曲线运动方程为s=$\frac{t-3}{t}$+t2,则t=2时的速度为$\frac{23}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式(x+1)(x-3)>0的解集为(  )
A.{x|x>3}B.{x|x<-1}C.{x|-1<x<3}D.{x|x>3或x<-1}

查看答案和解析>>

同步练习册答案