精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.
(1)求证:E、B、F、D1四点共面
(2)求证:平面A1GH∥平面BED1F.
分析:(1)在DD1上取点N,使DN=1,连接EN,CN,易得四边形ADNE是平行四边形,以及四边形BCNE是平行四边形,由此推知CN∥BE,则FD1∥BE,得到E、B、F、D1四点共面;
(2)利用三角形相似证明HG∥FB,由(1)知,A1G∥BE,从而可证平面A1GH∥平面BED1F.
解答:精英家教网证明:(1)如图:在DD1上取一点N使得DN=1,
连接CN,EN,则AE=DN=1.CF=ND1=2、
因为CF∥ND1所以四边形CFD1N是平行四边形,
所以D1F∥CN.
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,
又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,
所以四边形CNEB是平行四边形,
所以CN∥BE,
所以D1F∥BE,
所以E,B,F,D1四点共面;
(2)因为H是B1C1的中点,所以B1H=
3
2

因为B1G=1,所以
B1G
B1H
=
2
3

因为
FC
BC
=
2
3
,且∠FCB=∠GB1H=90°,
所以△B1HG∽△CBF,
所以∠B1GH=∠CFB=∠FBG,
所以HG∥FB,
由(1)知,A1G∥BE且HG∩A1G=G,FB∩BE=B,
所以平面A1GH∥平面BED1F.
点评:本题主要考查了了共面的判定,考查面面平行的判定,考查对基础知识的综合应用能力和基本定理的掌握能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知△ABC在第一象限,若A(1,1),B(5,1),A=60°,B=45°,求:
①边AB所在直线的方程;
②边AC和BC所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知△ABC的水平放置的直观图是等腰直角△A′B′C′,∠A′=90°,A′B′=
2
,则△ABC的面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)证明:平面ACD⊥平面ADE,
(2)令AC=x,V(x) 表示三棱锥A-CBE的体积,当V(x) 取得最大值时,求直线AD与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知△ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于点F,则AF:AC=
1:3
1:3

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修四2.4平面向量的数量积练习卷(二)(解析版) 题型:解答题

如图所示,已知△ABC中,A(2,-1),B(3,2),C(-3,-1),ADBC边上的高,求及点D的坐标.

 

查看答案和解析>>

同步练习册答案