精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的五面体中,面为直角梯形, ,平面 平面 ADE是边长为2的正三角形.

1)证明: 平面

2)求点B到平面ACF的距离.

【答案】1)证明见解析;(2

【解析】试题分析:(1)做辅助线,构造线面垂直,取的中点,连接先证 平面得到,再通过相似证得故得到线面垂直,再推线线垂直。(2承接第一问的结论,因为平面,故直接由B点做AF的垂线即可,垂线就是BE,再根据梯形的边长求出即可

1)取的中点,连接,依题意易知

平面平面平面 .

,所以平面,所以.

中, .

因为 平面,所以平面.

2由第一问知道平面,故点B到平面ACF的距离,直接连BEAF于点M,则BM就是要求的距离,在梯形ABFE中,求得BE=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某刻考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行偏差分析,决定从全班40位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如表:

(1)已知之间具有线性相关关系,求关于的线性回归方程;

(2)若这次考试该班数学平均分为120分,物理平均分为92,试预测数学成绩126分的同学的物理成绩.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1 , CD1的中点,则下列说法错误的是(
A.MN与CC1垂直
B.MN与AC垂直
C.MN与BD平行
D.MN与A1B1平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线为

1)求实数的值;

2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;

3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知 在区间(m2﹣4m,2m﹣2)上能取得最大值,求实数m的取值范围;
(2)设函数f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定义域为R的奇函数,若 ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函数f(x)= ﹣m| + |+1,x∈[﹣ ],m∈R.
(1)当m=0时,求f( )的值;
(2)若f(x)的最小值为﹣1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+ m2 , x∈[﹣ ]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

时,求曲线在点处的切线方程;

求函数的单调区间;

若函数有最值,写出的取值范围.(只需写出结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调增区间;

2)若存在,使得是自然对数的底数),求的取值范围.

查看答案和解析>>

同步练习册答案