精英家教网 > 高中数学 > 题目详情

【题目】公元前世纪的毕达哥拉斯是最早研究完全数的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合中随机抽取两个数,则这两个数中有完全数的概率是______.

【答案】

【解析】

依次按照完全数的定义16242836,得到集合为完全数,不为完全数,在集合中任取两个数有种情况,在集合中任取两个数有种情况,利用古典概型和互斥事件的概率公式即得解.

1没有除自身外的约数,因此1不为完全数;

6的真因子为1231+2+3=6,故6为完全数;

24的真因子为123468121+2+3+4+6+8+12=36,故24不为完全数;

28的真因子为1247141+2+4+7+14=28,故28为完全数;

36的真因子为12346912181+2+3+4+6+9+12+18=54,故36不为完全数;

因此集合为完全数,不为完全数.

在集合中任取两个数有种情况;

在集合中任取两个数有种情况;

这两个数中有完全数的对立事件为取到的两个数都不是完全数,因此:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为C1上任意一点P的直角坐标为,通过变换得到点P的对应点的坐标.

1)求点的轨迹C2的直角坐标方程;

2)直线的参数方程为为参数),C2于点MN,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)是定义在R上的偶函数,且对任意的xR恒有fx+1)=fx1),已知当x[01]时,fx)=(1x,则

2是函数fx)的一个周期;

②函数fx)在(12)上是减函数,在(23)上是增函数;

③函数fx)的最大值是1,最小值是0

x1是函数fx)的一个对称轴;

⑤当x∈(34)时,fx)=(x3.

其中所有正确命题的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数,在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线的极坐标方程为

写出的普通方程和的直角坐标方程;

相交于AB两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线经过点,且与极轴所成的角为.

1)求曲线的普通方程及直线的参数方程;

2)设直线与曲线交于两点,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2是圆心极坐标为(3π),半径为1的圆.

1)求曲线C1的参数方程和C2的直角坐标方程;

2)设MN分别为曲线C1C2上的动点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|xa|+|x+2|.

1)若a1.解不等式fxx21

2)若a0b0c0.fx)的最小值为4bc.求证:.

查看答案和解析>>

同步练习册答案