精英家教网 > 高中数学 > 题目详情
某车站每天8∶00—9∶00,9∶00—10∶00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为
到站时刻
8∶10
9∶10
8∶30
9∶30
8∶50
9∶50
概率



一旅客8∶20到车站,则它候车时间的数学期望为                   
解:因为旅客乙8:20到站,他的候车时间η的取值可能为10,30,50,70,90,
P(η=10)=
P(η=30)=
P(η=50)= ,
P(η=70)= ,
P(η=90)=
可得分布列和期望值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

某射手射击所得环数的分布列如下:

7
8
9
10
P
x
0.1
0.3
y
已知的期望,则y的值为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4。将4个这样的玩具同时抛掷于桌面上。
(Ⅰ)设为与桌面接触的4个面上数字中偶数的个数,求的分布列及期望E
(Ⅱ)求与桌面接触的4个面上的4个数的乘积能被4整除的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
一个口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是
(1)当时,不放回地从口袋中随机取出3个球,求取到白球的个数的期望
(2)若,有放回地从口袋中连续地取四次球(每次只取一个球),在四次摸球中恰好取到两次红球的概率大于,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

招聘会上,某公司决定先试用后再聘用小强,该公司的甲、乙两个部门各有4个不同岗位.
(Ⅰ)公司随机安排小强在这两个部门中的3个岗位上进行试用,求小强试用的3个岗位中恰有2个在甲部门的概率;
(Ⅱ)经试用,甲、乙两个部门都愿意聘用他.据估计,小强可能获得的岗位月工资及相应概率如下表所示:
甲部门不同岗位月工资(元)
2200
2400
2600
2800
获得相应岗位的概率
0.4
0.3
0.2
0.1
 
乙部门不同岗位月工资(元)
2000
2400
2800
3200
获得相应岗位的概率
0.4
0.3
0.2
0.1
 
求甲、乙两部门月岗位工资的期望与方差,据此请帮助小强选择一个部门,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某项新技术进入试用阶段前必须对其中三项不同指标甲、乙、丙进行通过量化检测。假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为,指标甲、乙、丙检测合格分别记4分、2分、4分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。
(Ⅰ)求该项技术量化得分不低于8分的概率;
(Ⅱ)记该技术的三个指标中被检测合格的指标个数为随机变量,求的分布列与数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

学校为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.
(Ⅰ)求移栽的4株大树中恰有3株成活的概率;
(Ⅱ)设移栽的4株大树中成活的株数为,求分布列与期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二项式的展开式的所有项的系数的和为,展开式的所有二项式
系数和为,若,则               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.
(Ⅰ)写出的分布列;
(Ⅱ)求数学期望

查看答案和解析>>

同步练习册答案