精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于两点.

1)求椭圆的方程;

2)在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.

【答案】12)存在;实数的取值范围是

【解析】

1)根据椭圆定义计算,再根据的关系计算即可得出椭圆方程;(2)设直线方程为,与椭圆方程联立方程组,求出的范围,根据根与系数的关系求出的中点坐标,求出的中垂线与轴的交点横,得出关于的函数,利用基本不等式得出的范围.

1)由题意可知

椭圆的方程为:

2)若存在点,使得以为邻边的平行四边形是菱形,

为线段的中垂线与轴的交点.

设直线的方程为:

联立方程组,消元得:

,又,故

由根与系数的关系可得,设的中点为

线段的中垂线方程为:

可得,即

,故,当且仅当时取等号,

,且

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会于20191018日至27日在中国武汉举行,中国队以1336442铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在多面体中,平面平面,且四边形为正方形,且//,点分别是的中点.

1)求证:平面

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形为直角梯形,为线段上一点,满足的中点,现将梯形沿折叠(如图2),使平面平面.

1)求证:平面平面

2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足a122a2a4a3,数列{bn}满足bn1+2log2an

1)求数列{an}{bn}的通项公式;

2)令cnanbn,求数列{cn}的前n项和Sn

3)若λ0,且对所有的正整数n都有2kλ+2成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体BACDE中,ABACAB4AC3DC⊥平面ABCEA⊥平面ABC,点M在线段BC上,且AM.

1)证明:AM⊥平面BCD

2)若点F为线段BE的中点,且三棱锥FBCD的体积为1,求CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,记数列的前n项和为,数列的前n项和为,且.

1)求的值;

2)求数列的通项公式;

3)若,且成等比数列,求kt的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx,若关于x的方程f2x)﹣afx+aa20有四个不等的实数根,则a的取值范围是(

A.B.(﹣,﹣1)∪[1+∞

C.(﹣,﹣1)∪{1}D.(﹣10)∪{1}

查看答案和解析>>

同步练习册答案