精英家教网 > 高中数学 > 题目详情
点E、F、G分别是正方体ABCD-A1B1C1D1的棱AB、BC、B1C1的中点,如图所示,则下列命题中的真命题是________(写出所有真命题的编号).

①以正方体的顶点为顶点的三棱锥的四个面中最多只有三个面是直角三角形;
②过点F、D1、G的截面是正方形;
③点P在直线FG上运动时,总有AP⊥DE;
④点Q在直线BC1上运动时,三棱锥A-D1QC的体积是定值;
⑤点M是正方体的平面A1B1C1D1内的到点D和C1距离相等的点,则点M的轨迹是一条线段.
③④⑤
对于①,三棱锥A-BCC1的四个面都是直角三角形,故①为假命题;对于②,截面为矩形FGD1D,易知其边长不等,故②为假命题;③易证DE⊥平面AFG,又AP?平面AFG,故DE⊥AP,故③为真命题;④由于BC1∥平面ACD1,故三棱锥Q-ACD1的高为定值,即点Q到平面ACD1的距离为定值,而底面积S△ACD1也为定值,故三棱锥体积为定值,故④为真命题;⑤到D、C1距离相等的点的轨迹为平面A1BCD1(中垂面),又点M在平面A1B1C1D1中,故点M的轨迹为线段A1D1,故⑤为真命题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,已知平面平面,.
(1)求证:
(2)若为棱上的一点,且平面,求线段的长度

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥D-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形ABCD中,,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转,得到梯形

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P-AC-B的大小为60°.过P作PH⊥EF于H.
(I)求证:PH⊥平面ABC;
(Ⅱ)若a=
2
b
,求直线DP与平面PBC所成角的大小;
(Ⅲ)若a+b=2,求四面体P-ABC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD中,E、F分别为AB、AD上的点,且AE∶EB=AF∶FD=1∶4,又H、G分别为BC、CD的中点,则(  )
A.BD∥平面EFG,且四边形EFGH是平行四边形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是平行四边形
D.EH∥平面ADC,且四边形EFGH是梯形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个结论:

①点M到AB的距离为
②三棱锥C-DNE的体积是
③AB与EF所成的角是.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设b,c表示两条直线,α,β表示两个平面,则下列命题正确的是(  )
A.若b?α,c∥α,则c∥b
B.若b?α,b∥c,则c∥α
C.若c?α,α⊥β,则c⊥β
D.若c?α,c⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是(  )
A.若a,b与α所成的角相等,则a∥b
B.若a∥α,b∥β,α∥β,则a∥b
C.若a?α,b?β,a∥b,则α∥β
D.若a⊥α,b⊥β,α⊥β,则a⊥b

查看答案和解析>>

同步练习册答案