精英家教网 > 高中数学 > 题目详情

【题目】如图,锐角△ABC中, = = ,点M为BC的中点. (Ⅰ)试用 表示
(Ⅱ)若| |=5,| |=3,sin∠BAC= ,求中线AM的长.

【答案】解:(Ⅰ)∵M是BC的中点 ∴ = + )= + );
(Ⅱ)∵sin∠BAC= ,△ABC是锐角三角形,
∴cos∠BAC=
= +2 + )= (25+2×5×3× +9)=13,
∴| |= ,即中线AM=
【解析】(Ⅰ)根据向量的加法以及中点的定义求出 即可;(Ⅱ)求出∠BAC的余弦值,从而求出AM的长即可.
【考点精析】解答此题的关键在于理解平面向量的基本定理及其意义的相关知识,掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,其左焦点到点的距离为.不过原点的直线相交于两点,且线段被直线平分.

1)求椭圆的方程;

2)求的面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两个图形F1 , F2 , 我们将图象F1上任意一点与图形F2上的任意一点间的距离中的最小值,叫作图形F1与F2图形的距离,若两个函数图象的距离小于1,则这两个函数互为“可及函数”,给出下列几对函数,其中互为“可及函数”的是 . (写出所有正确命题的编号) ①f(x)=cosx,g(x)=2;
②f(x)=ex . g(x)=x;
③f(x)=log2(x2﹣2x+5),g(x)=sin ﹣x;
④f(x)=x+ ,g(x)=lnx+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼
的时间(分钟)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

总人数

20

36

44

50

40

10

将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计


(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上有两点A( ),B( ). (Ⅰ)求 夹角的余弦值;
(Ⅱ)已知C(1,0),记∠AOC=α,∠BOC=β,求tan 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实数,当时, 恒成立, 则实数的取值范围是

A B C D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中为自然对数的底数).

(1)当时,求函数的单调递增区间;

(2)若函数在区间上单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k的值为(

A.7
B.6
C.5
D.4

查看答案和解析>>

同步练习册答案