【题目】甲、乙两人在相同条件下各射击次,每次中靶环数情况如图所示:
(1)请填写下表(先写出计算过程再填表):
平均数 | 方差 | 命中环及环以上的次数 | |
甲 | |||
乙 |
(2)从下列三个不同的角度对这次测试结果进行
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中环及环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力).
【答案】(1)填表见解析;(2)①甲成绩比乙稳定;②乙成绩比甲好些;③乙更有潜力.
【解析】
(1)由拆线图,求出和,完成列联表.
(2)①平均数相同,,从而甲成绩比乙稳定.
②平均数相同,命中9环及9环以上的次数甲比乙少,乙成绩比甲好些.
③甲成绩在平均数上下波动;而乙处于上升势头,从第三次以后就没有比甲少的情况发生,乙更有潜力.
解:由列联表中数据,计算由题图,知:
甲射击10次中靶环数分别为9,5,7,8,7,6,8,6,7,7.
将它们由小到大排列为5,6,6,7,7,7,7,8,8,9.
乙射击10次中靶环数分别为2,4,6,8,7,7,8,9,9,10.
将它们由小到大排列为2,4,6,7,7,8,8,9,9,10.
(1)(环,
.
填表如下:
平均数 | 方差 | 命中9环及9环以上的次数 | |
甲 | 7 | 1.2 | 1 |
乙 | 7 | 5.4 | 3 |
(2)①平均数相同,,甲成绩比乙稳定.
②平均数相同,命中9环及9环以上的次数甲比乙少,乙成绩比甲好些.
③甲成绩在平均数上下波动;而乙处于上升势头,从第三次以后就没有比甲少的情况发生,乙更有潜力.
科目:高中数学 来源: 题型:
【题目】某医疗器械公司在全国共有个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这个销售点的年销量绘制出如下的频率分布直方图.
(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这个销售点中抽取容量为的样本,求该五组,,,,,(单位:千台)中每组分别应抽取的销售点数量.
(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取个,求这两个销售点不在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗8升汽油
D.某城市机动车最高限速80千米/小时.相同条件下,在该市用乙车比用丙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点,圆:与轴的正半轴的交点是,过点的直线与圆交于不同的两点.
(1)若直线与轴交于,且,求直线的方程;
(2)设直线,的斜率分别是,,求的值;
(3)设的中点为,点,若,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1, ,其中n∈N*.
(1)设,求证:数列{bn}是等差数列,并求出{an}的通项公式.
(2)设,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得对于n∈N*,恒成立?若存在,求出m的最小值;若不存在,请说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 | |||
对车辆状况不满意 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过转赠给好友.某用户共获得了张骑行券,其中只有张是一元券.现该用户从这张骑行券中随机选取张转赠给好友,求选取的张中至少有张是一元券的概率.
参考数据:
参考公式:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com