精英家教网 > 高中数学 > 题目详情

【题目】如图,圆O为△ABC的外接圆,D为的中点,BD交AC于E.
(Ⅰ)证明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圆O的半径.

【答案】证明:(Ⅰ)连接OD,OC,
∵D是弧AC的中点,∴∠ABD=∠CBD
∵∠ABD=∠ECD∴∠CBD=∠ECD
∵∠BDA=∠EDA∴△BAD∽△AED

∴AD2=DEDB.
解:(2)∵D是弧AC的中点,∴OD⊥AC,
∵AD∥BC,DE=2EB,AD=,△BEC∽△AED,∴BC=
∴∠ACB=∠DAC,∠BDC=∠ADB,
∵∠ADB=∠ACB,∠DAC=∠DBC,∴BE=CE,AE=DE,
延长DO交AC于F,交圆于G,
设BE=x,则DE=2x,
∵AD2=DEDB,∴6=2x3x,解得BE=CE=1,DE=AE=2,
∴AF=CF=,DF==
设圆半径为r,则 OC=r,
∴r2=(﹣r)2+(2 , 解得r=
∴圆半径为

【解析】(Ⅰ)连接OD,OC,推导出△BAD∽△AED,由此能证明AD2=DEDB.
(2)设⊙O的半径为r,推导出△BEC∽△AED,从而求出BE=CE=1,DE=AE=2,由此能求出圆半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos x,a等于抛掷一颗均匀的正六面体骰子得到的点数,则y=f(x)在[0,4]上有偶数个零点的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆锥中,已知,⊙O的直径,点C在底面圆周上,且的中点.

(Ⅰ)证明:∥平面

(Ⅱ)证明:平面平面

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x0为函数f(x)=sinπx的零点,且满足|x0|+f(x0+)<33,则这样的零点有(  )
A.61个
B.63个
C.65个
D.67个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

当a为任意实数时,直线(a﹣1)x﹣y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是

已知双曲线的右焦点为(5,0),一条渐近线方程为2x﹣y=0,则双曲线的标准方程是

抛物线的准线方程为.

已知双曲线,其离心率e(1,2),则m的取值范围是(﹣12,0).

其中正确命题的序号是___________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根据正弦定理把转化为边的关系,进而根据ABC的周长,联立方程组,可求出a的值.

根据正弦定理,可化为

∵△ABC的周长为

联立方程组

解得a=2.

故选:B

【点睛】

(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.

(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.

型】单选题
束】
7

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,A=120°,AB=5,BC,则AC的值为________

【答案】2

【解析】

利用余弦定理可得关于AC的方程,解之即可.

由余弦定理可知cosA===﹣

解得AC=2或﹣7(舍去)

故答案为:2

【点睛】

对于余弦定理一定要熟记两种形式:(1;(2.另外,在解与三角形、三角函数有关的问题时,还要记住 等特殊角的三角函数值,以便在解题中直接应用.

型】填空
束】
15

【题目】嫦娥奔月,举国欢庆,据科学计算,运载神六长征二号系列火箭,在点火第一秒钟通过的路程为2 km,以后每秒钟通过的路程都增加2 km,在达到离地面210 km的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin4x﹣cos4x的图象,可以将函数y=sin4x的图象(  )
A.向右平移个单位
B.向左平移个单位
C.向右平移个单位
D.向左平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,,前项和满足条件

1)求数列的通项公式和

2)记,求数列的前项和.

查看答案和解析>>

同步练习册答案