精英家教网 > 高中数学 > 题目详情

【题目】甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

【答案】
(1)解:若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局,

所以

同理


(2)解:在2n局比赛中甲获胜,则甲胜的局数至少为n+1局,

=

所以

又因为

所以 ,所以P(n)<P(n+1)


【解析】(1)若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局,由此能求出P(2),同理能求出P(3)的值.(2)在2n局比赛中甲获胜,则甲胜的局数至少为n+1局,从而 ,由此能求出P(n)<P(n+1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ ﹣lnx(a∈R).
(1)当a=1时,求函数f(x)的图象在点( ,f( ))处的切线方程;
(2)当a≥0时,记函数Γ(x)= ax2+(1﹣2a)x+ ﹣1+f(x),试求Γ(x)的单调递减区间;
(3)设函数h(a)=3λa﹣2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,设直线过点A( ),B(3, ),且直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,求实数r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.

(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣asinxcosx(a∈R,其中e是自然对数的底数).
(1)当a=0时,求f(x)的极值;
(2)若对于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范围;
(3)是否存在实数a,使得函数f(x)在区间 上有两个零点?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.

(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为正数的等差数列,其前项和为

(1)求数列的通项公式.

(2)设数列满足

①求数列的通项公式;

②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

查看答案和解析>>

同步练习册答案