【题目】如图,在直角梯形ABCD中,AD∥BC, AB⊥BC, BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE, AC, DE,得到如图所示的空间几何体.
(1)求证:AB⊥平面ADC;
(2)若AD=1,AB=,求点B到平面ADE的距离.
【答案】(1)证明见解析.
(2) .
【解析】分析:(1)证明DC⊥AB,AD⊥AB,即可得到AB⊥平面ADC.
(2)因为AB=,AD=1,所以BD=,依题意△ABD∽△DCB,得到CD=,利用等体积法即可.
详解:(1)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,
又BD⊥DC,DC平面BCD,所以DC⊥平面ABD.
因为AB平面ABD,所以DC⊥AB.
又AD⊥AB,DC∩AD=D,AD,DC平面ADC,所以AB⊥平面ADC.
(2)因为AB=,AD=1,所以BD=.
依题意△ABD∽△DCB,所以=,即=.
所以CD=.
故BC=3.
由于AB⊥平面ADC,AB⊥AC,E为BC的中点,
所以AE==.
同理DE==.
所以S△ADE=×1×=.
因为DC⊥平面ABD,
所以VA—BCD=CD·S△ABD=.
设点B到平面ADE的距离为d,
则d·S△ADE=VB—ADE=VA—BDE=VA—BCD=,
所以d=,即点B到平面ADE的距离为.
科目:高中数学 来源: 题型:
【题目】兰天购物广场某营销部门随机抽查了100名市民在2018年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为.
消费金额(单位:千元) | 人数 | 频率 |
8 | 0.08 | |
12 | 0.12 | |
8 | 0.08 | |
7 | 0.07 | |
合计 | 100 | 1.00 |
(1)试确定,,,的值,并补全频率分布直方图(如图);
(2)用分层抽样的方法从消费金额在、和的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质_____.(填入所有正确结论的序号)
①最大值为,图象关于直线对称;
②图象关于y轴对称;
③最小正周期为π;
④图象关于点对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为原点,焦点F与圆的圆心重合.
(1)求抛物线C的标准方程;
(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;
(3)若弦过焦点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是R上的偶函数,当x1 , x2∈(0,+∞)时,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.设 ,则( )
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com