精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,ADBC, ABBC, BDDC,点EBC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE, AC, DE,得到如图所示的空间几何体.

  

(1)求证:AB⊥平面ADC

(2)若AD=1,AB,求点B到平面ADE的距离.

【答案】(1)证明见解析.

(2) .

【解析】分析:(1)证明DCABADAB,即可得到AB⊥平面ADC.

(2)因为ABAD=1,所以BD,依题意△ABD∽△DCB,得到CD,利用等体积法即可.

详解:(1)因为平面ABD⊥平面BCD,平面ABD∩平面BCDBD

BDDCDC平面BCD,所以DC⊥平面ABD.

因为AB平面ABD,所以DCAB.

ADABDCADDADDC平面ADC,所以AB⊥平面ADC.

(2)因为ABAD=1,所以BD.

依题意△ABD∽△DCB,所以,即.

所以CD.

BC=3.

由于AB⊥平面ADCABACEBC的中点,

所以AE.

同理DE.

所以SADE×1×.

因为DC⊥平面ABD

所以VABCDCD·SABD.

设点B到平面ADE的距离为d

d·SADEVBADEVABDEVABCD

所以d,即点B到平面ADE的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】兰天购物广场某营销部门随机抽查了100名市民在2018年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为.

消费金额(单位:千元)

人数

频率

8

0.08

12

0.12

8

0.08

7

0.07

合计

100

1.00

(1)试确定的值,并补全频率分布直方图(如图);

(2)用分层抽样的方法从消费金额在的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为矩形,测棱底面,点的中点,作


Ⅰ)求证:平面平面

Ⅱ)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数gx)的图象,则函数gx)具有性质_____.(填入所有正确结论的序号)

①最大值为,图象关于直线对称;

②图象关于y轴对称;

③最小正周期为π

④图象关于点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为原点,焦点F与圆的圆心重合.

(1)求抛物线C的标准方程;

(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;

(3)若弦过焦点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的多面体中, 平面平面

1)请在图中作出平面,使得,且,并说明理由;

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的偶函数,当x1 , x2∈(0,+∞)时,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.设 ,则(
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)

查看答案和解析>>

同步练习册答案