精英家教网 > 高中数学 > 题目详情

已知关于x的不等式(ax-a2-4)(x-4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为________.

-2
分析:根据已知关于x的不等式(ax-a2-4)(x-4)>0,对字母a进行分类讨论:①a<0时,[x-(a+)](x-4)<0,其中a+<0,故解集为(a+,4),利用基本不等式得出a+的最大值为-4,从而A中共含有最少个整数,求得此时实数a的值;②a=0时,-4(x-4)>0,解集为(-∞,4),整数解有无穷多,不符合条件; ③a>0时,[x-(a+)](x-4)>0,此时整数解有无穷多,不符合条件.
解答:已知关于x的不等式(ax-a2-4)(x-4)>0,
①a<0时,[x-(a+)](x-4)<0,其中a+<0,
故解集为(a+,4),
由于a+=-(-a-)≤-2=-4,
当且仅当-a=-,即a=-2时取等号,
∴a+的最大值为-4,当且仅当a+=-4时,A中共含有最少个整数,此时实数a的值为-2;
②a=0时,-4(x-4)>0,解集为(-∞,4),整数解有无穷多,故a=0不符合条件;
③a>0时,[x-(a+)](x-4)>0,其中a+≥4,
∴故解集为(-∞,4)∪(a+,+∞),整数解有无穷多,故a>0不符合条件;
综上所述,a=-2.
故答案为:-2.
点评:本小题主要考查一元二次不等式的应用、元素与集合关系的判断、不等式的解法等基础知识,考查运算求解能力,考查分类讨论思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式ax2-2ax+x-2<0
(1)当a=3时,求此不等式解集;
(2)当a<0时,求此不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-5:不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,(1)求实数a的取值范围.(2)证明:若x-1<0,则a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式(a+b)x+(2a-3b)<0的解集是{x|x>3},则不等式(a-3b)x+(b-2a)>0的解集是
{x|x>
1
3
}
{x|x>
1
3
}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)已知关于x的不等式x2+mx-2<0解集为(-1,2).
(1)求实数m的值;
(2)若复数z1=m+2i,z2=cosα+isinα,z1•z2为纯虚数,求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,已知两圆交于A、B两点,过点A、B的直线分别与两圆交于P、Q和M、N.求证:PM∥QN.
B.(矩阵与变换)
已知矩阵A的逆矩阵A-1=
10
02
,求矩阵A.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,过椭圆
x2
12
+
y2
4
=1
在第一象限处的一点P(x,y)分别作x轴、y轴的两条垂线,垂足分别为M、N,求矩形PMON周长最大值时点P的坐标.
D.(不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案