精英家教网 > 高中数学 > 题目详情

【题目】已知为奇函数,为偶函数,且

函数的解析式;

用函数单调性的定义证明:函数上是减函数

关于的方程有解,求实数的取值范围

【答案】详见解析

【解析】

试题1根据的奇偶性便有,联立便可解出的解析式2根据减函数的定义,设任意的,且,然后作差,可以得出,根据对数函数的单调性便可得出,从而得出gx01上单调递减;3求出,根据便可得出的范围,从而得出的范围,根据对数函数的单调性便可得出的范围,从而便可得出m的取值范围

试题解析:为奇函数,为偶函数,

,即

①②得:

设任意的,且,

因为,所以

所以,即,所以0

所以,即函数上是减函数

因为,所以

,则

因为的定义域为,所以的定义域为

,所以

因为关于的方程有解,则

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

时,试判断函数在区间上的单调性,并证明;

若不等式上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的前 项和为 ,并且满足 .

(1)求数列 通项公式;

(2)设 为数列 的前 项和,求证: .

【答案】(1) (2)见解析

【解析】试题分析:(1)根据题意得到 ,两式做差得到;(2)根据第一问得到,由错位相减法得到前n项和,进而可证和小于1.

解析:

(1)∵

时,

时, ,即

∴数列 时以 为首项, 为公差的等差数列.

.

(2)∵

由① ②得

点睛:这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.

型】解答
束】
22

【题目】已知 分别是椭圆 )的左、右焦点, 是椭圆 上的一点,且 ,椭圆 的离心率为 .

(1)求椭圆 的标准方程;

(2)若直线 与椭圆 交于不同两点 ,椭圆 上存在点 ,使得以 为邻边的四边形 为平行四边形( 为坐标原点).

)求实数 的关系;

)证明:四边形 的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a、m满足a= cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7 , 且(a0+a2+a4+a62﹣(a1+a3+a5+a72=37 , 则m=(
A.﹣1或3
B.1或﹣3
C.1
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数 的最小正周期;

(2)若 ,且 ,求 的值.

【答案】(1) (2)

【解析】试题分析:(1)根据二倍角公式和两角和差公式得到,进而得到周期;(2)由,得到 由配凑角公式得到,代入值得到函数值.

解析:

(1)由题意

=

所以 的最小正周期为

(2)由

又由 ,所以

型】解答
束】
20

【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).

(1)该厂从第几年开始盈利?

(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,顶点A(a,0),B(0,b),中心O到直线AB的距离为
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足: ,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣ ,若Q(λ,μ)为一动点,E1(﹣ ,0),E2 ,0)为两定点,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点 分别是椭圆的左、右顶点.

)求圆和椭圆的方程.

)已知 分别是椭圆和圆上的动点( 位于轴两侧),且直线轴平行,直线 分别与轴交于点 .求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足不等式组 ,(2,1)是目标函数z=﹣ax+y取最大值的唯一最优解,则实数a的取值范围是(
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣1,|an﹣an1|=2n1(n∈N,n≥2),且{a2n1}是递减数列,{a2n}是递增数列,则a2016=

查看答案和解析>>

同步练习册答案