【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
【答案】12 90
【解析】
由题目分析,可设这个足球有正五边形皮子x块,则根据题意可得等量关系式:正六边形的块数×3=正五边形的块数×5,由此可以解出正五边形个数,根据两条边组成一条棱,因此可求棱的条数.
足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;
每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,
另3条边则与其他白色皮子的边缝在一起.
所以设这个足球有x块正五边形,一共有5x条边,其中白皮三条边和黑皮相连,
又足球表面中的正六边形的面为20个,
根据题意可得方程:,
解得,
该足球表面中的正五边形的面为12个;
因为任何相邻两个面的公共边叫做足球的棱,
所以每条棱由两条边组成,
该足球表面的棱为:条.
故答案为:12;90.
科目:高中数学 来源: 题型:
【题目】已知非常数列满足,若,则( )
A.存在,,对任意,,都有为等比数列
B.存在,,对任意,,都有为等差数列
C.存在,,对任意,,都有为等差数列
D.存在,,对任意,,都有为等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,是由矩形,和组成的一个平面图形,其中,,将其沿折起使得重合,连接如图②.
(1)证明:平面平面;
(2)若为线段中点,求直线与平面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,直线分别与轴交于点,在轴上,是否存在点,使得无论非零实数怎样变化,总有为直角?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医务人员说:“包括我在内,我们社区诊所医生和护士共有16名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护士;至少有一名男医生.”请你推断说话的人的性别与职业是( )
A.男医生B.女医生C.男护士D.女护士
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com