精英家教网 > 高中数学 > 题目详情

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3.

(1)证明:函数y=f(x)是R上的减函数;

(2)证明:函数y=f(x)是奇函数;

(3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.


解析:

(1)证明  设x1,x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).

∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).

故f(x)是R上的减函数.

(2)证明  ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,则有f(x)+f(-x)=f(0),

又令a=b=0,则有f(0)=f(0)+f(0),∴f(0)=0.从而x∈R,f(x)+f(-x)=0,

∴f(-x)=-f(x).故y=f(x)是奇函数.

(3)解  由于y=f(x)是R上的单调递减函数,

∴y=f(x)在[m,n]上也是减函数,故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).

由于f(n)=f(1+(n-1))=f(1)+f(n-1)=…=nf(1),同理f(m)=mf(1).

又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m, f(n)=-n.

∴函数y=f(x)在[m,n]上的值域为[-n,-m].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的最大值;
(3)比较20092010与20102009的大小,并说明为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

同步练习册答案