精英家教网 > 高中数学 > 题目详情
9.已知直线l1:x+my+9=0和直线l2:(m-2)x+3y+3m=0,m为何值时,直线l1与l2
(1)重合;
(2)平行;
(3)垂直.

分析 解方程1×3-m(m-2)=0可得平行或重合;解m-2+3m=0可得垂直.

解答 解:由1×3-m(m-2)=0可解得m=-1或m=3,
当m=-1时,直线l1:x-y+9=0,
直线l2:-3x+3y-3=0,即x-y+1=0,两直线平行;
当m=3时,直线l1:x+3y+9=0,
直线l2:x+3y+9=0,两直线重合;
故(1)m=3时,两直线重合;
(2)当m=-1时,两直线平行;
(3)由m-2+3m=0可解得m=$\frac{1}{2}$,
此时两直线垂直.

点评 本题考查直线的一般式方程和平行垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求函数的定义域:①f(x)=2x+$\sqrt{lnx}$    ②f(x)=$\frac{\sqrt{x(x-3)}}{2x-1}$     ③f(x)=$\frac{\sqrt{lgx}}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个直三棱柱的三视图如图所示,其中俯视图是一个顶角为120°的等腰三角形,则该直三棱柱外接球的表面积为(  )
A.20πB.$\frac{20\sqrt{5}}{3}$πC.25πD.25$\sqrt{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}中,an=2n-1,Sn=a1+a2+…+an,则$\underset{lim}{x→∞}$$\frac{{a}_{n}^{2}}{{S}_{n}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平行四边形ABCD中,∠CBD=90°,BC=BD=1,将平行四边形沿对角线BD折成60°的二面角(如图中实线部分).求:
(Ⅰ)A、C两点间的距离;
(Ⅱ)异面直线AC与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=cosx的定义域为[a,b].值域为[-1,$\frac{\sqrt{2}}{2}$],则b-a的值不可能是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN.求证:M,A,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=(ab-a-4b-5)x2+$\frac{a+4b}{x}$(a>0,b>0)为奇函数,则f(1)的最小值为(  )
A.12B.20C.16D.32

查看答案和解析>>

同步练习册答案