精英家教网 > 高中数学 > 题目详情

【题目】函数fx=2sinωx+φ)(ω0|φ|)的一个零点为,其图象距离该零点最近的一条对称轴为x=

)求函数fx)的解析式;

)若关于x的方程fx+log2k=0x[]上恒有实数解,求实数k的取值范围.

【答案】fx=2sin2x)(k[4]

【解析】

(Ⅰ)由函数的零点列式得到ω+φ=kπ,再由已知求得周期,进一步求得ω,则φ可求,函数解析式可求;

(Ⅱ)由x的范围求得相位的范围,进一步求出函数值域,再由方程fx)+log2k=0在x[]上恒有实数解即可求得k的范围.

(Ⅰ)由题意,f)=2sinω+φ)=0,即ω+φ=kπ

T=,得ω=2,

代入①得φ=,取k=1,得φ=

fx)=2sin(2x);

(Ⅱ)∵x[]

[],得fx)∈[-2,1]

fx)+log2k=0,

log2k=-fx)∈[]

k[,4]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.

(1)从该企业生产的所有产品中随机抽取1件,求该产品为优等品的概率;

(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测.买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为元,求的分布列与数学期望;

(3)商场为推广此款产品,现面向意向客户推出“玩游戏,送大奖”活动.客户可根据抛硬币的结果,操控机器人在方格上行进,已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、……、第50格.机器人开始在第0格,客户每掷一次硬币,机器人向前移动一次,若掷出正面,机器人向前移动一格(从),若掷出反面,机器人向前移动两格(从),直到机器人移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,若机器人停在“胜利大本营”,则可获得优惠券.设机器人移到第格的概率为,试证明是等比数列,并解释此方案能否吸引顾客购买该款产品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性,并说明理由;

(2)当时,直接写出函数的单调区间(不需证明)

(3)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的数列{an}中,前n项和

(1)求数列{an}的通项公式;

(2)若恒成立,求k的取值范围;

(3)是否存在正整数mk,使得amam+5ak成等比数列?若存在,求出mk的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.

(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;

(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响,已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分,经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.

1

文章学习积分

1

2

3

4

5

概率

2

视频学习积分

2

4

6

概率

1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;

2)现随机抽取3人了解学习情况,设积分不低于9分的人数为,求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱台中,底面,四边形为菱形,.

(1)若中点,求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

同步练习册答案