【题目】已知函数
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,
(Ⅲ)如果,且,证明
【答案】(Ⅰ)f(x)在()内是增函数,在()内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)= (Ⅱ)见解析(Ⅲ)见解析
【解析】
(Ⅰ)解:f’
令f’(x)=0,解得x=1
当x变化时,f’(x),f(x)的变化情况如下表
X | () | 1 | () |
f’(x) | + | 0 | - |
f(x) | 极大值 |
所以f(x)在()内是增函数,在()内是减函数.
函数f(x)在x=1处取得极大值f(1)且f(1)=
(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)
令F(x)=f(x)-g(x),即
于是
当x>1时,2x-2>0,从而’(x)>0,从而函数F(x)在[1,+∞)是增函数.
又F(1)=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).
(Ⅲ)证明:(1)
若
(2)若
根据(1)(2)得
由(Ⅱ)可知,>,则=,所以>,从而>.因为,所以,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内事增函数,所以>,即>2.
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于不等式,其中.
(1)试求不等式的解集;
(2)对于不等式的解集,若满足(其中为整数集).试探究集合能否为有限集?若能,求出使得集合中元素个数最少时的取值范围,并用列举法表示集合;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆于,两点,过点作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设点的轨迹为曲线,直线交于,两点,过点且与直线垂直的直线与圆交于,两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )
A.180B.192C.420D.480
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.
(1)求图中的值及样本的中位数与众数;
(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.
(3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研机构为了研究喝酒与糖尿病是否有关,现对该市30名男性成人进行了问卷调查,并得到了如下列联表,规定“平均每天喝100ml以上的”为常喝.已知在所有的30人中随机抽取1人,是糖尿病的概率为.
常喝 | 不常喝 | 合计 | |
有糖尿病 | 2 | ||
无糖尿病 | 18 | ||
合计 | 30 |
(1)请将上表补充完整;
(2)是否有的把握认为糖尿病与喝酒有关?请说明理由.
(3)已知常喝酒且有糖尿病的人中恰有两名女性,现从常喝酒且有糖尿病的人中随机抽取2人,求恰好抽到一名男性和一名女性的概率.
参考公式:
参考数据:
k |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com