精英家教网 > 高中数学 > 题目详情
12.焦点在x轴上的椭圆mx2+y2=1的离心率为$\frac{1}{2}$,则m=(  )
A.2B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 利用已知条件求出椭圆的离心率,然后求出m即可.

解答 解:焦点在x轴上的椭圆mx2+y2=1的离心率为$\frac{1}{2}$,
可得$\frac{\frac{1}{m}-1}{\frac{1}{m}}$=$\frac{1}{4}$.
解得m=$\frac{3}{4}$.
故选:C.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知x2+y2+z2=1,则x+2y+3z的最小值为-$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:
甲是中国人,还会说英语.
乙是法国人,还会说日语.
丙是英国人,还会说法语.
丁是日本人,还会说汉语.
戊是法国人,还会说德语.
则这五位代表的座位顺序应为(  )
A.甲丙丁戊乙B.甲丁丙乙戊C.甲乙丙丁戊D.甲丙戊乙丁

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,若a5=6,则S9的值为(  )
A.27B.36C.45D.54

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从一副没有大小王的52张扑克牌中随机抽取1张,事件A为“抽得红桃8”,事件B为“抽得为黑桃”,则事件“A或B”发生的概率值是$\frac{7}{26}$(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=|x2-1|+x2+kx.
(1)若k=2,求方程f(x)=0的解;
(2)若函数y=f(x)在(0,2)上有两个零点x1=α,x2=β,求k的取值范围;
(3)在(2)的条件下,证明$\frac{1}{α}+\frac{1}{β}$<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出以下三个说法:
①非线性回归问题,不能用线性回归分析解决;
②在刻画回归模型的拟合效果时,相关指数R2的值越接近1,说明拟合的效果越好;
③对分类变量X与Y,若它们的随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越大;
  ④统计中用相关系数r来衡量两个变量之间线性关系的强弱,则|r|的值越小,相关性越弱.
其中正确的说法的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x2≤7},Z为整数集,则集合A∩Z中元素的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两条渐进线为l1、l2,且l1与x轴所成的夹角为30°,且双曲线的焦距为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l,l与椭圆C相交于A、B,与圆O:x2+y2=a2相交于D、E两点,当△OAB的面积最大时,求弦DE的长.

查看答案和解析>>

同步练习册答案