精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=a2-cosx(a∈R),则f'(x)等于(  )
A.sinxB.cosxC.2a+sinxD.2a-cosx

分析 根据题意,由f(x)的解析式直接求导,即可得答案.

解答 解:根据题意,函数f(x)=a2-cosx,
则f'(x)=sinx;
故选:A.

点评 本题考查导数的计算,关键是掌握导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,若复数z=$\frac{1-ai}{1+i}$(a∈R)的实部为-3,则|z|=(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|x2≤4},B={x|x≥0}.则A∩B=(  )
A.{x|0≤x≤2}B.{x|x≥-2}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\end{array}\right.$,则z=2x+y的取值范围是(  )
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)为可导函数,且f′(2)=$\frac{1}{2}$,求$\underset{lim}{h→0}$$\frac{f(2-h)-f(2+h)}{h}$的值(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x2+ax+b(a,b∈R),记集合A={x∈R|f(x)≤0},B={x∈R|f(f(x)+1)≤0},若A=B≠∅,则实数a的取值范围为(  )
A.[-4,4]B.[-2,2]C.[-2,0]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.终边在x轴负半轴上的角是零角
B.三角形的内角必是第一、二象限内的角
C.不相等的角的终边一定不相同
D.若β=α+k•360°(k∈Z),则α与β终边相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面ABCD是直角梯形,AB∥CD,CD⊥AD,CD=2AB=2AD=2,M为PC的中点.
(Ⅰ)求证:BM∥平面PAD;
(Ⅱ)求证:直线BM⊥平面PDC;
(Ⅲ)求直线PD与平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=(n+1)4${\;}^{{a}_{n}}$-$\frac{1}{4{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案